energy never disappears, for example, if you give some kinetic energy to a ball and it stops few seconds later, friction steals this energy to ground which ball was going on. "Law of Conservation of Energy" tell us that energy can't disappear
Answer:
How far will the electron travel beforehitting a plate is 248.125mm
Explanation:
Applying Gauss' law:
Electric Field E = Charge density/epsilon nought
Where charge density=1.0 x 10^-6C/m2 & epsilon nought= 8.85× 10^-12
Therefore E = 1.0 x 10^-6/8.85× 10^-12
E= 1.13×10^5N/C
Force on electron F=qE
Where q=charge of electron=1.6×10^-19C
Therefore F=1.6×10^-19×1.13×10^5
F=1.808×10^-14N
Acceleration on electron a = Force/Mass
Where Mass of electron = 9.10938356 × 10^-31
Therefore a= 1.808×10^-14 /9.11 × 10-31
a= 1.985×10^16m/s^2
Time spent between plate = Distance/Speed
From the question: Distance=1cm=0.01m and speed = 2×10^6m/s^2
Therefore Time = 0.01/2×10^6
Time =5×10^-9s
How far the electron would travel S =ut+ at^2/2 where u=0
S= 1.985×10^16×(5×10^-9)^2/2
S=24.8125×10^-2m
S=248.125mm
Work needed: 720 J
Explanation:
The work needed to stretch a spring is equal to the elastic potential energy stored in the spring when it is stretched, which is given by

where
k is the spring constant
x is the stretching of the spring from the equilibrium position
In this problem, we have
E = 90 J (work done to stretch the spring)
x = 0.2 m (stretching)
Therefore, the spring constant is

Now we can find what is the work done to stretch the spring by an additional 0.4 m, that means to a total displacement of
x = 0.2 + 0.4 = 0.6 m
Substituting,

Therefore, the additional work needed is

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly