Answer:16.3
Explanation:the
Explanation is in words
on a pic and i showed extra proof
Answer:
-100m/s not shure tho thx tho
Answer:
A) t = 0.55 s
B) x = 24.8 m
Explanation:
A) We can find the time at which the ball will be in the air using the following equation:
Where:
is the final height= 0
is the initial height= 1.5 m
is the component of the initial speed in the vertical direction = 0 m/s
t: is the time =?
g: is the gravity = 9.81 m/s²

By solving the above equation for t we have:
Hence, the ball will stay 0.55 seconds in the air.
B) We can find the distance traveled by the ball as follows:

Where:
a: is the acceleration in the horizontal direction = 0
is the final position =?
is the initial position = 0
is the component of the initial speed in the horizontal direction = 45 m/s


Therefore, the ball will travel 24.8 meters.
I hope it helps you!
Since this is a projectile motion problem, break down each of the five kinematic quantities into x and y components. To find the range, we need to identify the x component of the displacement of the ball.
Let's break them down into components.
X Y
v₁ 32 cos50 m/s 32 sin50 m/s
v₂ 32 cos50 m/s ?
Δd ? 0
Δt ? ?
a 0 -9.8 m/s²
Let's use the following equation of uniform motion for the Y components to solve for time, which we can then use for the X components to find the range.
Δdy = v₁yΔt + 0.5ay(Δt)²
0 = v₁yΔt + 0.5ay(Δt)²
0 = Δt(v₁ + 0.5ayΔt), Δt ≠ 0
0 = v₁ + 0.5ayΔt
0 = 32sin50m/s + 0.5(-9.8m/s²)Δt
0 = 2<u>4</u>.513 m/s - 4.9m/s²Δt
-2<u>4</u>.513m/s = -4.9m/s²Δt
-2<u>4</u>.513m/s ÷ 4.9m/s² = Δt
<u>5</u>.00s = Δt
Now lets put our known values into the same kinematic equation, but this time for the x components to solve for range.
Δdₓ = v₁ₓΔt + 0.5(a)(Δt)²
Δdₓ = 32cos50m/s(<u>5</u>.00s) + 0.5(0)(<u>5</u>.00)²
Δdₓ = 32cos50m/s(<u>5</u>.00s)
Δdₓ = 10<u>2</u>.846
Therefore, the answer is A, 102.9m. According to significant digit rules, neither would be correct, but 103m is the closest to 102.9m so I guess that is what it is.
1) 5765 mol
First of all, we need to find the volume of the gas, which corresponds to the volume of the room:

Now we can fidn the number of moles of the gas by using the ideal gas equation:

where
is the gas pressure
is the gas volume
n is the number of moles
R is the gas constant
is the gas temperature
Solving for n,

2) 184 kg
The mass of one mole is equal to the molar mass of the oxygen:

so if we have n moles, the mass of the n moles will be given by

since n = 5765 mol, we find
