<h2>
Answer: 502.08 J</h2>
Explanation:
The heat (thermal energy) needed in to raise the temperature in a process can be found using the following equation:
(1)
Where:
is the heat
is the mass of the element (<u>water</u> in this case)
is the specific heat capacity of the material. In the case of water is
is the variation in temperature <u>(which is increased in this case)</u>
Knowing this, let's rewrite (1) with these values:
(2)
Finally:
Answer:
a) 27.2 V
b)27.2 V
Explanation:
Charge of the electron =charge of the proton = q = 1.6 × 10⁻¹⁹ C
Radius = r = 0.53×10⁻¹⁰ m
Electric Potential = V = k q/r
k = 9 ×10⁹ N m²/C² = Coulomb's constant.
V = (9 ×10⁹)(1.6 × 10⁻¹⁹)/( 0.53×10⁻¹⁰) = 27.2 V
b) Potential Energy of the electron = k q × q / r
= [(9 ×10⁹)(1.6 × 10⁻¹⁹)(1.6 × 10⁻¹⁹) / (0.53×10⁻¹⁰)] / (1.6 × 10⁻¹⁹) eV,
since 1 electron volt = (1.6 × 10⁻¹⁹)joules
= 27.2 eV
Given data:
Wave length (λ) = 2.30 m,
Frequency (f) = 370 Hz (waves/sec),
Determine the speed of the wave = ?
Speed of the wave is defined as "the distance a wave travels in a given time". And it is a product of <em>wavelength (λ) </em>and <em>frequency(f). </em>
An Important point to be remember here is <em>"when increasing the wave length of the wave does not increase the speed of the wave"</em> because the wave speed also depends on frequency (f), So, if the wave length increases wave speed decreases. As a result the product of wave length and frequency are same.
Mathematically,
Wave speed = wave length × frequency
= 2.30 m × 370 waves/sec.
= 851 m/s.
<em>Speed of the wave is 851 m/s</em>
Answer:
to jamal then luis then to eva then back to owen
<span>Newton's law of universal gravitation is an INVERSE SQUARE LAW, which rules out C and D.It is proportional to the masses involved, which rules out B.A could be seen as one form of the lawF=G m1 m1/r^2Though I recognise it more as F=G m1 m2/r^2.G is the universal gravity constant and is distinct from g which is the acceleration of gravity LOCAL to a planet or moon. So, g is LOCAL, G is universal.Newton was a smart bloke, as are all these scientists whose names frequently appear.
</span>