Answer:
T=280.41 °C
Explanation:
Given that
At T= 24°C Resistance =Ro
Lets take at temperature T resistance is 2Ro
We know that resistance R given as
R= Ro(1+αΔT)
R-Ro=Ro αΔT
For copper wire
α(coefficient of Resistance) = 3.9 x 10⁻³ /°C
Given that at temperature T
R= 2Ro
Now by putting the values
R-Ro=Ro αΔT
2Ro-Ro=Ro αΔT
1 = αΔT
1 = 3.9 x 10⁻³ x ΔT
ΔT = 256.41 °C
T- 24 = 256.41 °C
T=280.41 °C
So the final temperature is 280.41 °C.
Hello!
This is a matter of superposition.
When the waves peak at the same time and place, they produce constructive interference, meaning the waves interact together in a positive way, to make a wave with Amplitude of both waves added together. When the peaks differ however, at the same time and place, then it is destructive interference and the waves essentially cancel each other out.
Hope this helps. Any questions please just ask. Thank you kindly.
It is a completely false statement that in <span>any energy transformation, there is always some energy that gets wasted as non-useful heat. The correct option among the two options that are given in the question is the second option. I hope that this is the answer that has actually come to your desired help.</span>
Answer:

Explanation:
As we know that the orbital speed of the satellite is given as

also we know that
time period of the revolution is given as

now from above equation we know that


so we will have

now plug in all data in this equation


Answer:
The atmospheric pressure is
.
Explanation:
Given that,
Atmospheric pressure
drop height h'= 27.1 mm
Density of mercury 
We need to calculate the height
Using formula of pressure

Put the value into the formula



We need to calculate the new height




We need to calculate the atmospheric pressure
Using formula of atmospheric pressure

Put the value into the formula


Hence, The atmospheric pressure is
.