1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serggg [28]
3 years ago
14

Which metal ion has the “coolest” flame color? What color is it?

Physics
2 answers:
Softa [21]3 years ago
7 0

Answer:

i think blue

Explanation:

sorry if wrong

fredd [130]3 years ago
3 0

Answer:

either red or blue

Explanation:

just learned this

You might be interested in
A stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. What is the spe
KIM [24]

Answer: V = 15 m/s

Explanation:

As  stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,

F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz

Using doppler effect formula

F = C/ ( C - V) × f

Where

F = observed frequency

f = source frequency

C = speed of light = 3×10^8

V = speed of the car

Substitute all the parameters into the formula

2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10

2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)

1.000000049 = 3×10^8/(3×10^8 - V)

Cross multiply

300000014.7 - 1.000000049V = 3×10^8

Collect the like terms

1.000000049V = 14.71429

Make V the subject of formula

V = 14.71429/1.000000049

V = 14.7 m/s

The speed of the car is 15 m/s approximately.

8 0
3 years ago
In your every day life you come across a range of motion in which ,
alekssr [168]
A)acceleration is in the direction of motion
7 0
3 years ago
Read 2 more answers
A mass of 5kg starts from rest and pulls down vertically on a string wound around a disk-shaped, massive pulley. The mass of the
Paha777 [63]

Answer:

c. V = 2 m/s

Explanation:

Using the conservation of energy:

E_i =E_f

so:

Mgh = \frac{1}{2}IW^2 +\frac{1}{2}MV^2

where M is the mass, g the gravity, h the altitude, I the moment of inertia of the pulley, W the angular velocity of the pulley and V the velocity of the mass.

Also we know that:

V = WR

Where R is the radius of the disk, so:

W = V/R

Also, the moment of inertia of the disk is equal to:

I = \frac{1}{2}MR^2

I = \frac{1}{2}(5kg)(2m)^2

I = 10 kg*m^2

so, we can write the initial equation as:

Mgh = \frac{1}{2}IV^2/R^2 +\frac{1}{2}MV^2

Replacing the data:

(5kg)(9.8)(0.3m) = \frac{1}{2}(10)V^2/(2)^2 +\frac{1}{2}(5kg)V^2

solving for V:

(5kg)(9.8)(0.3m) = V^2(\frac{1}{2}(10)1/4 +\frac{1}{2}(5kg))

V = 2 m/s

8 0
3 years ago
A car is running at a velocity of 50 miles/hour and the driver accelerates the car by 10miles/hour.How far the car travels from
dezoksy [38]
Initial velocity u = 50 miles/hour
acceleration a = 10 miles/hour
Time t = 2 hours
Distance travelled S = ut + (at^2)/2
Substituting the values in the second equation of motion,
S = 50*2 + (10 * 2 *2)/2
S = 100 + 20
S = 120 miles
Therefore the distance travelled by the car in the next two hours is 120 miles
4 0
3 years ago
Read 2 more answers
Two teams of nine members each engage in tug-of-war. Each of the first team's members has an average mass of 68 kg and exerts an
diamong [38]

Answer:

(a) Acceleration  = 0.1063 m/s^2      (Second team wins)

(b) Tension in rope = 65.106 N

Explanation:

Total mass of first team = 68 * 9 = 612 kg

Total force of first team = 1350 * 9 = 12150 N

Total mass of second team = 73 * 9 = 657 kg

Total force of seconds team = 1365 * 9 = 12285 N

Difference in force = 12285 - 12150 = 135 N   (towards the second team as it has more force)

(a) For acceleration we get:

F = m * a

135 = (mass of both teams) * a

a = 135 / (612 + 657)

acceleration  = 0.1063 m/s^2      (Second team wins)

(b) Since we know the acceleration of the first team (pulling being pulled towards the second team at an acceleration of 0.1063 m/s^2) , we can find out the force required to move them:

Force required for first team = mass of first team * acceleration

Force required = 612 * 0.1063

Force required = 65.106 N

This is the force exerted on the first team through the rope, so the tension in the rope will also be 65.106 N.

7 0
4 years ago
Other questions:
  • Astronaut A can cover 10 meters per minute walking with the heavy shovel. What does
    9·1 answer
  • The lower the value of the coefficient of friction, the___ the resistance to sliding.
    7·1 answer
  • Find the length of an arc with a radius of 6.0m swept across 2.5 radians.
    9·1 answer
  • A magnet can attract or repel another magnet from a distance true or false?
    15·2 answers
  • Kepler's second law: as a planet moves around its orbit, it sweeps out ______areas in ______ times.
    5·1 answer
  • Which of the following is not an example of a cognitive process
    7·2 answers
  • Which kind of intermolecular force attracts the stearate ion to the oil drop?
    10·1 answer
  • In equilibrium, ________. Group of answer choices the ratio of marginal benefits to income should be identical across all goods
    10·1 answer
  • A taxi hurries with a constant speed of 60 miles per hour. How long will it take to travel a distance of 130 miles
    6·1 answer
  • What does water’s high specific heat capacity explain about water?(1 point)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!