<span>We know that pressure is the force applied into a surface, in our case the wall of the room, so then first we will calculate the surface of this wall:
S = 2.2 * 3.2 = 7.04 m2
Then we also know the atmospheric pressure in normal conditions is 1 atm. That is the same 1 atm = 101325 Pascals or 101325 N/m2
Now we need to use the formula : P = F/S where P is pressure, F is force and S is surface to calculate the force:
F = P * S = 101325 * 7.04 = 713,328 Newtons
Conclusion: the force acts on the wall due the air inside the room is 713,328 N</span>
The conservation of momentum states that the total momentum in a system is constant if there is no external force acting on the system. The total momentum in the gun bullet system is 0 so it must stay that way.
The momentum of the bullet is mv = 0.015*500=7.5
The momentum of the gun must be the same to keep the total momentum of the system equal to zero, so we know that p = 7.5 for the gun.
Substituting this in we get:
7.5=3.1x
x=7.5/3.1
x=2.42
So the speed of the gun is 2.4m/s.
Answer:
Explanation:
a )
If it is totally absorbed pressure is calculated as follows .
Pressure = I / c where I is intensity of light falling .
= 1000 / 3 x 10⁸
= 3.33 x 10⁻⁶ N / m²
b ) weight of tritium atom
= 3 x 1.67 x 10⁻²⁷ kg
acceleration = force / mass
= 3.33x 10⁻⁶ / 3 x 1.67 x 10⁻²⁷
= .6646 x 10²¹ m /s²
= 66.46 x 10¹⁹ m / s²
Speed v = distance travelled / time taken
v = d / t
v = 540 / 60h
v = 9 km /h
Idk its really weird because the ridges are making the quarter stand and therefore able to roll