When someone stands against a locker and is does not moving at all, then there will be no displacement and since displacement = 0
Work done also becomes equal to zero.
Work done is usually defined as change in energy. Since the work done is zero there has been no energy used.
Answer:


Δd = 
Explanation:
As
, when the car is making full stop,
.
. Therefore,

Apply the same formula above, with
and
, and the car is starting from 0 speed, we have

As
. After
, the car would have traveled a distance of

Hence 
As
we can simplify 
After t time, the train would have traveled a distance of 
Therefore, Δd would be 
Preserved fossil<span> (like a fossil in amber, ice or tar.</span>
the total electric potential at location P, which is at the center of the rectangle is 0V.
The charges placed at the corner of the rectangle are same in magnitude but different in charge. hence the total electric potential will be same in magnitude but different in charge and will be cancelled. Similarly, all the total electric potential will be cancelled and resultant will be zero.
<h3>
What is total electric potential?</h3>
- The amount of labor required to convey a unit of electric charge from a reference point to a given place in an electric field is known as the electric potential (also known as the electric field potential, potential drop, or the electrostatic potential).
- More specifically, it is the energy per unit charge for a test charge that is negligibly disruptive to the field under discussion. In order to prevent the test charge from gaining kinetic energy or radiating, the travel across the field is also meant to occur with very little acceleration.
- The electric potential at the reference location is, by definition, zero units. Any point may be used as the reference point, but typically it is earth or a point at infinity.
To learn more about total electric potential with the given link
brainly.com/question/14776328
#SPJ4
Answer:
c. 2.6 h
Explanation:
The longest time spent over dinner is the time that you have available minus the minimum possible time spent in the trip.
The time of the trip is found using:
t = 
Where distance is d and velocity is v. The time will be minimum at maximum velocity. Replacing with the data we have:
Ttrip =
= 8.1818 h
Tdinner = 10.8h - 8.1818 h = 2.6181h
that aproximates 2.6 h.