In the graph of the force vs the time:
Force is the gradient of the momentum versus the time.
If we get the area under the curve in this graph:
it will be calculated as : force * time
which gives the change in momentum or the impulse.
Therefore, the area under the curve <span>represents the impulse of the force in a graph of force versus time</span>
"As frequency increases, wavelength decreases. Frequency and wavelength are inversely proportional. This basically means that when the wavelength is increased, the frequency decreases and vice versa. Wavelength is described as the distance between a trough to a trough or a crest to a crest."
I'd recommend paraphrasing it tho.
Answer:
To prevent from getting injured.
Answer:
see from this analysis, the apparent weight of the body is lower due to the push created by the air brujuleas
Explanation:
We will propose this exercise using Archimedes' principle, which establishes that the thrust on a body is equal to the volume of the desalted liquid.
B = ρ g V
The weight of a submerged body is the net force between the weight and the thrust
F_net = W - B
we can write the weight as a function of the density
ρ_body = m / V
m = ρ_body V
W = mg
W = ρ _body g V
we substitute
F_net= ( ρ_body - ρ _fluid) g V
In general this force is directed downwards, we can call this value the apparent weight of the body. This is the weight of the submerged body.
W_aparente = ( ρ_body - ρ _fluid) g V
If some air bubbles formed in this body, the net force of these bubbles is
F_net ’= #_bubbles ( ρ_fluido - ρ_air) g V’
this force is directed upwards
whereby the measured force is
F = W_aparente - F_air
As we can see from this analysis, the apparent weight of the body is lower due to the push created by the air brujuleas
The motivation behind why the vertical stature of the stairs is the main thing measured is that it uncovers to us how much gravity is up against the individual and their weight, so we require this data to decide how much vitality and power we have to get up the stairs.