Answer: D.) 39,200 J
Via the equation of potential energy PE = mgh where m is mass, g is the average gravity on earth and h is the height. In this case m = 400 kg, g = 9.8, h = 10 m thus:

P.E.= 39,200 Joules
Answer:
The heat capacity for the second process is 15 J/K.
Explanation:
Given that,
Work = 100 J
Change temperature = 5 k
For adiabatic process,
The heat energy always same.


We need to calculate the number of moles and specific heat
Using formula of heat


Put the value into the formula


We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity for the second process
Using formula of heat

Put the value into the formula



Hence, The heat capacity for the second process is 15 J/K.
Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
Answer:
+2m/s
Explanation:
average velocity = displacement traveled / total time taken
= +12m/ 6s
= +2 m/s
Answer:


Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density


Lets take element mass at distance x
dm =λ dx
mass moment of inertia

So total moment of inertia

By putting the values

By integrating above we can find that

Now to find location of center mass


Now by integrating the above


So mass moment of inertia
and location of center of mass 