Answer:
![A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B66%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%26-5%5C%5C6%26-18%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given
![A = \left[\begin{array}{cc}-18&5\\-6&-2\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-18%265%5C%5C-6%26-2%5Cend%7Barray%7D%5Cright%5D)
Required
Determine the inverse
A matric is of the form:
![A = \left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
First, we need to calculate the determinant (D)

By comparison, we have:




The inverse is then represented as:
![A^{-1} = \frac{1}{D} \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7BD%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dd%26-b%5C%5C-c%26a%5Cend%7Barray%7D%5Cright%5D)
This gives:
![A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B66%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%26-5%5C%5C6%26-18%5Cend%7Barray%7D%5Cright%5D)
≈9.38
13² - 9² = x²
189 - 81 = 88
√88 = x
Answer:6.66666666667
Step-by-step explanation: