Explanation:
Displacement = 5 km
A.
Converting km/h to m/s,
10 km/h * 1000 m/1 km * 1 h/3600 s
= 25/9 m/s
Remember,
700 watt = 700 J/s
Velocity = displacement/time
Time = 5000/(25/9)
= 1800 s
Energy = power * time
= 700 * 1800
= 1,260,000
= 1260 kJ
B.
Converting km/h to m/s,
3 km/h * 1000 m/1 km * 1 h/3600 s
= 5/6 m/s
290 watt = 290 J/s
Velocity = displacement/time
Time = 5000/(5/6)
= 6000 s
Energy = power * time
= 290 * 6000
= 1,740,000
= 1740 kJ
C.
Walking burns more energy; 1,740,000 joules. It burns more because you walk for a greater period of time.
Answer: 1339.5 joules
Explanation:
Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
Since Mass = 67kg
g = 9.8m/s^2
h = 2.04 metres
Thus, GPE = 67kg x 9.8m/s^2 x 2.04m
GPE = 1339.5 joules
Thus, the gravitational potential energy at the highest point is 1339.5 joules
Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃) 
let's calculate
α = (24 0.22 - 13 0.10)
2/12 0.22²
α = 13.7 rad / s²
Given:
Sample 1:
Chloroform is 
12 g Carbon
1.01 g Hydrogen
106.4 g Cl
Sample 2:
30.0 g of Carbon
Solution:
mass of chloroform from sample 1:
12 + 1.01 +106.4 =119.41 g
Now, for the total mass of chloroform in sample 2:
mass of chloroform 

mass of chloroform = 119.41 
= 298.53 g
Answer:
They are called beneficial mutations. They lead to new versions of proteins that help organisms adapt to changes in their environment. Beneficial mutations are essential for evolution to occur. They increase an organism's changes of surviving or reproducing, so they are likely to become more common over time.
Explanation: