<span>Well, since it's in the shape of a wheel and the person walks around the edge of it, they must have a centripetal acceleration. Since a=v^2/r you can solve for "v" using 2.20 as your "a" and 59.5 as your "r" (r=half of the diameter).
</span> a=v^2/r
v=(a*r)^(1/2)=((2.20)*(59.5))^(1/2)=<span>
<span>11.44 m/s.
</span></span><span> After you get "v," plugged that into T=2 pi r/ v. This will give you the 1rev per sec.
</span> T=2 pi r/ v= T=(2)*(pi)*(59.5)/(11.44)= <span>
<span>32.68 rev/s
</span></span> Use dimensional analysis to get rev per min (1rev / # sec) times (60 sec/min).
(32.68 rev/s)(60 s/min)=<span>
<span>1960.74 rev/min
</span></span>
In that case, their momentum must be equal.
So, m1v1 = m2v2
20 * 20 = 40 * v2
v2 = 400 / 40
v2 = 10
In short, Your Answer would be: 10 m/s
Hope this helps!
Answer: C. Some of uranium's mass is converted into energy, so the smaller atoms have less mass.
Explanation:
From Einstein's mass-energy relation:
E = mc²
Mass and energy are equivalent. Mass can be converted into energy and energy into mass.
When Uranium atoms under go nuclear fission, smaller atoms are formed and huge amount of energy is released. This energy comes from the mass difference of the uranium nuclei and new nuclei formed. This mass converted into energy according to Einstein's equation.
B 30 kg because
One quarter =1/2
Kg=60
1/2 of Kg
1/2*60
30 kg
Answer:
the bowling ball, because it has more mass and therefore more inertia
Explanation:
As per law of inertia we know that if an object is having more inertia then it is difficult to change state of motion.
Inertia is the property of mass of an object which always resist to change the state of motion of the object.
If an object has more inertia then it is more difficult to change the state of motion.
Now we know that we have one bowling ball and one basket ball, since bowling ball is having more mass then it must have more inertia so it is difficult to start the motion in bowling ball.
So correct answer will be
the bowling ball, because it has more mass and therefore more inertia