1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
5

Reflected light from a thin film of oil gives constructive interference for light with a wavelength inside the film of λfilm. By

how much would the film thickness need to be increased to give destructive interference?
A. 2λfilm   
B. λfilm   
C. λfilm/2   
D. λfilm/4
Physics
1 answer:
My name is Ann [436]3 years ago
3 0

Answer:D. λfilm/4

Explanation: Destructive interference is a type of wave interference which means the coming together or over-lapping of two opposing waves creating No effect or the Cancellation of the wave impact. An example of destructive wave is when Noise cancel the effect of sound from a head phone.

The film thickness will need to be increased by λfilm/4 for it to be able to give a destructive interference.

You might be interested in
North America experienced all of the following during the last glacial period EXCEPT alpine glaciers covered the Rocky and Casca
Juli2301 [7.4K]

Answer:

the Hudson Bay was covered with alpine glaciers

Explanation:

During the last glacial period, large portions of North America were covered with ice. The majority of the ice was from the ice sheets that were covering Canada and the northern part of the United States, and the alpine glaciers on the mountain ranges. Hudson Bay was all frozen at this point of time. It was not covered with alpine glaciers though, instead it was covered with the ice of the extended ice sheets, with the ice cover reaching up to 2 km in thickness.

5 0
3 years ago
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
Juanita made an electromagnet by placing an iron bar inside a coil of wire and then running current through the wire. After awhi
swat32

Answer: Correct Ans is B

Explanation:

5 0
3 years ago
Encuentre en km.h la velocidad de un tigre que corre 550 km.h en 69min​
Len [333]

Answer:

v = 478.26 km/h

Explanation:

The question is "find in km.h the speed of a tiger that runs 550 km in 69min"

Distance, d = 550 km

Time, t = 69 min = 1.15 h

We need to find the speed of the tiger. The speed of an object is equal to the total distance covered divided by time taken. So,

v=\dfrac{550\ km}{1.15\ h}\\\\v=478.26\ km/h

So, the speed of the tiger is 478.26 km/h.

8 0
3 years ago
A container is filled with water and the pressure at the container bottom is P. If the container is instead filled with a liquid
den301095 [7]
Eat ahah is when s susuehs
7 0
3 years ago
Other questions:
  • What is the formula for momentum?
    5·1 answer
  • In a pickup game of dorm shuffleboard, students crazed by final exams use a broom to propel a calculus book along the dorm hallw
    14·1 answer
  • Keiko builds a transformer in the lab, but it does not decrease the voltage as much as she needs. What should Keiko change to fu
    11·2 answers
  • Dock walls sometimes have pillars replaced with rubber car tyres.explain how this reduces the possibility of damage what a boat
    6·1 answer
  • Holden is trying to turn man the velocity of his car, he went 20 meters east, turned around and left 40 meters less, he turned t
    14·1 answer
  • A flat circular loop of wire of radius 0.50 m that is carrying a 2.0-A current is in a uniform magnetic field of 0.30 T. What is
    10·1 answer
  • The first step of the scientific method is
    7·2 answers
  • HELP: This is what I think can you correct me?
    15·2 answers
  • Part A: A group of students performed the same "Ohm's Law" experiment that you did in class. They obtained the following results
    13·1 answer
  • Calculate the molecular weight of Aluminium hydroxide​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!