Given :
Triangle RST has the vertices R(2, 3), S(-2, 1), and T(-1, 5).
To Find :
The coordinates after the two transformations:
a) Translation (x, y) --> (x - 2, y - 1) .
b) Rotation: 90 degrees counterclockwise at the origin.
Solution :
Applying transition a) , we get :
R'(2-2,3-1) , S'(-2-2,1-1) , T'(-1-2,5-1)
R'( 0, 2) , S'( -4 , 0), T'( -3, 4)
Now , When any point ( h , k ) is rotated 90° counterclockwise about the origin, the new points are (-k , h) .
So , R''( -2, 0) , S''( 0, -4 ) , T''( -4 , -3 ) .
Therefore , the coordinates after transformations are
( -2, 0) ,( 0, -4 ) , ( -4 ,-3 ) .
Hence , this is the required solution .