I was never sure of what the "additive inverse" is.
So, just now, just for you, I went and looked it up.
The additive inverse of any number ' A ' is the number
that you need to ADD to A to get zero. That's all !
So now, let's check out the choices:
a), 6, -(-6)
That second number, -(-6), is the same as +6 .
So the two numbers are the same.
Do you get zero when you add them up ? No.
b). -7, 7
What do you get when you add -7 and 7 ?
You get zero.
So these ARE additive inverses.
c). -7, -7
What do you get when you add -7 to -7 ?
You get -14 . That's not zero, so these
are NOT additive inverses.
d). 7, 7
What do you get when you add 7 to 7 ?
You get 14. That's NOT zero, so these
are NOT additive inverses.
e). 6, -6
What do you get when you add 6 to -6 ?
You get zero.
So these ARE additive inverses.
What do we end up with from the list of choices:
a)., c)., and d). are NOT additive inverses.
b). and e). ARE additive inverses.
Answer:
.
Step-by-step explanation: Given radical expression
.
According to the product property of roots.
![\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%5Ctimes%20%5Csqrt%5Bn%5D%7Bb%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%20%5Ctimes%20b%7D)
On applying above rule, we get
![\sqrt[3]{5x} \times \sqrt[3]{25x^2} = \sqrt[3]{5x \times 25x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B25x%5E2%7D%20%3D%20%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D)
5 × 25 = 125 and

Therefore,
![\sqrt[3]{5x \times 25x^2}= \sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D%3D%20%5Csqrt%5B3%5D%7B125x%5E3%7D)
<h3>So, the correct option would be second option
![\sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125x%5E3%7D)
.</h3>
The ratio of touchdowns per game is 0.42857142857
Answer:
33.3333333333
Step-by-step explanation:
One coin would equal over 11 more would be 8.3333333333 so time that by 4
GoodLuck
Sorry it’s not that neat but I think the answer would be in the exact surd form root 233