1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
15

Difference between Arctan and arctan

Mathematics
2 answers:
Svetlanka [38]3 years ago
8 0
Arctan(x) is an inverse function such that the range is only the principal value. However, arctan(x) takes on infinitively many values
kogti [31]3 years ago
6 0
One with a capital A and one with a small a no other difference
You might be interested in
Pyramid A is a square pyramid with a base side length of 14 inches and a height of 6 inches. Pyramid B has a volume of 3,136 cub
leonid [27]

The Volume of PYRAMID A is 8 times greater than the Volume of PYRAMID B as obtained by taking the ratio of the volume of both pyramids.

Volume of a square based pyramid is given as :

V = a^2h/3

Where; h = height ; a = base edge

Hence, Volume of PYRAMID A :

V = 14^2 * (6/3)\\\\V = 392 in^3

Volume of PYRAMID B = 3,136 in³

Divide Volume of pyramid B by pyramid A :

3136 in^3 / 392 in^3

= 8 times

Expressing as a percentage, multiply by 100% ;

8 * 100% = 800%

Therefore, The volume of PYRAMID B is 800% times GREATER THAN that of PYRAMID A.

Learn more :

brainly.com/question/17615619

8 0
3 years ago
Read 2 more answers
A magician asks two volunteers to each draw a card from a standard deck of cards. What is the probability that the first card is
mars1129 [50]

Answer:

6.37%

Step-by-step explanation:

A deck of cards have 52 cards.  There are 4 suits of 13 card each, those suits are Hearts, Clubs, Diamond and Spades.

The probability that the first card is a heart is:

P(Hearts) = \frac{13}{52}

Now, the probabily that the second card is a diamond is:

P(Diamond | First card is Heart) = \frac{13}{51}

The Probability that the first card is a heart and the second one a diamond is given by:

P(Hearts)×P(Diamond | First card is Heart)

= \frac{13}{52}\frac{13}{51}

= 6.37%

4 0
3 years ago
Read 2 more answers
Solve the following questions-
Setler79 [48]

Answer:

  2/5

Step-by-step explanation:

To get the ratio as a pure number, it must be expressed as the quotient of two values that have the same units. For the purpose here, it is convenient to convert both values to units of seconds.

__

<h3>units conversion</h3>

The conversion factor between minutes and seconds is ...

  1 minute = 60 seconds

Multiplying this equation by 3 gives ...

  3 minutes = 180 seconds

__

<h3>ratio of interest</h3>

Then the desired ratio is ...

  (72 seconds)/(3 minutes) = (72 seconds)/(180 seconds) = 72/180

  = (36×2)/(36×5)

  = 2/5

The ratio in its simplest form is 2/5.

3 0
2 years ago
A sports store has 468 golf balls. They will be put into boxes that hold 18 balls each. What is the minimum number of boxes need
Alona [7]
468/18 = 26

Therefore they need at least 26 boxes to hold all the golf balls.

Hope this helps :)
7 0
3 years ago
Read 2 more answers
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Other questions:
  • How do I find the largest angle of the triangle ??
    12·1 answer
  • I need help please help
    10·2 answers
  • there was a total of six football games a month. the season is played for five months. how many football games are in the season
    7·1 answer
  • PLEASE HELP! all you need to do is drag the things in the correct order....
    11·1 answer
  • Suppose you deposit 1348 at an interest rate of 2.5% per year for 18 years
    11·1 answer
  • What is 167,-197,-200,15,-65,-110 greatest to least
    13·1 answer
  • Explain why a positive discriminant results in two real solutions.
    11·1 answer
  • Two planes, which are 3740 miles apart, fly towards eah other. Their speeds diifer by 35 miles per hour. If they pass eah other
    6·1 answer
  • 3a-5=-14<br><br> plz help asap<br> what is the answer <br> and what does a stand for
    8·2 answers
  • Good afternoon can someone please helppp :))))
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!