Answer:Locate the row corresponding to known unit of torque along the left of the table. Multiply by the factor under the column for the desired units. For example, to convert 2 oz-in torque to n-m, locate oz-in row at table left. Locate 7.062 x 10-3 at intersection of desired n-m units column. Multiply 2 oz-in x (7.062 x 10-3 ) = 14.12 x 10-3 n-m.
Converting between units is easy if you have a set of equivalencies to work with. Suppose we wanted to convert an energy quantity of 2500 calories into watt-hours. What we would need to do is find a set of equivalent figures for those units. In our reference here, we see that 251.996 calories is physically equal to 0.293071 watt hour. To convert from calories into watt-hours, we must form a “unity fraction” with these physically equal figures (a fraction composed of different figures and different units, the numerator and denominator being physically equal to one another), placing the desired unit in the numerator and the initial unit in the denominator, and then multiply our initial value of calories by that fraction.
Explanation:
Since both terms of the “unity fraction” are physically equal to one another, the fraction as a whole has a physical value of 1, and so does not change the true value of any figure when multiplied by it. When units are canceled, however, there will be a change in units. For example, 2500 calories multiplied by the unity fraction of (0.293071 w-hr / 251.996 cal) = 2.9075 watt-hours.
Answer:
The new volume after the temperature reduced to -100 °C is 0.894 L
Explanation:
Step 1: Data given
Volume of nitrogen gas = 1.55 L
Temperature = 27.0 °C = 300 K
The temperature reduces to -100 °C = 173 K
The pressure stays constant
Step 2: Calculate the new volume
V1/T1 = V2/T2
⇒with V1 = the initial volume of the gas = 1.55 L
⇒with T1 = the initial temperature = 300 K
⇒with V2 = the new volume = TO BE DETERMINED
⇒with T2 = the reduced temperature = 173 K
1.55 L / 300 K = V2 / 173 K
V2 = (1.55L /300K) * 173 K
V2 = 0.894 L
The new volume after the temperature reduced to -100 °C is 0.894 L
Answer:
iodine
Explanation:
In the presence of starch, iodine turns a blue/black colour. It is possible to distinguish starch from glucose (and other carbohydrates) using this iodine solution test. For example, if iodine is added to a peeled potato then it will turn black. Benedict's reagent can be used to test for glucose.
The one you have selected is correct. CO is a compound because it contains more than one element.
Answer:
When excess of carbon dioxide is passed in lime water, calcium carbonate is converted to calcium bicarbonate which is soluble, hence the milkiness due to calcium carbonate disappears.
Explanation:
Ca(OH)2+CO2 → CaCO3 (Milkiness) ↓+H2O
CaCO3+H2O+CO2 → Ca(HCO3)2 (soluble)