<h3><u>Answer</u>;</h3>
H2O -Bronsted Acid
<h3><u>Explanation;</u></h3>
- Bronsted-Lowry acids are H+ donors
, while Bronsted-Lowry bases are H+ acceptors
.
- A reaction of a Bronsted-Lowry acid and a Bronsted base is a neutralization reaction that is characterized by H+ transfer.
- The above reaction is an example of base ionization or dissociation where;
B (aq) + H2O (l) → BH+ (aq) + OH– (aq)
That is; Base + Acid will give a conjugate acid + hydroxide ion
- In our case; NO2- + H2O → HNO2 + OH- ; H2O is the H+ donor and thus, it is a Bronsted Acid.
Answer : 0.026 moles of oxygen are in the lung
Explanation :
We can solve the given question using ideal gas law.
The equation is given below.

We have been given P = 21.1 kPa
Let us convert pressure from kPa to atm unit.
The conversion factor used here is 1 atm = 101.3 kPa.

V = 3.0 L
T = 295 K
R = 0.0821 L-atm/mol K
Let us rearrange the equation to solve for n.



0.026 moles of oxygen are in the lung
The trend of ionization energy in the periodic table is decreasing from right to left and from top to bottom. In this case, we are given with elements <span>K, Ca, Ge, Se, Br, Kr and see the periodic table to check the trend. The answer from highest to lowest Kr, Br, Se, Ge, Ca, and K</span>
M = n/V
.5M = n/.100 L
n = .1 L * .5M
n= .05 mols of MgCl2
mass of MgCl2 = .05 mols of MgCl2 * 95.211 grams/ 1 mol of MgCl2
mass of MgCl2 = 4.76 grams
4.76 grams of MgCl2 is needed to make 100 ml of a solution that is .500M, in chloride ion. Bolded = confused