Answer: 
Step-by-step explanation:
Given : The number of cherry lollipop = 5
The total number of lollipop = 8
the number of lollipops other than grape =6
The probability of selecting a cherry lollipop is given by :_

The probability of selecting a lollipop other than grape is given by :_

Since, there is replacement , then the events are independent of each other.
Now, the probability that Julie will select a cherry lollipop and then a lollipop other than grape is given by :-

Hence, the required probability =
Answer:
Step-by-step explanation:
Graph the parent function y = |x|. This graph has a v shape with vertex at (0, 0) and opens up.
Now translate the entire graph 6 units to the right. The vertex will now be at (6, 0).
Finally, translate this most recent graph 4 units down. The vertex will now be at (6, -4).
Answer:
x=3
Step-by-step explanation:
<em>3</em><em>x</em><em>-</em><em>4</em><em>=</em><em>8</em><em>-</em><em>x</em><em>(</em><em>Group</em><em> </em><em>like</em><em> </em><em>terms</em><em>)</em>
<em>3</em><em>x</em><em>+</em><em>x</em><em>=</em><em>8</em><em>+</em><em>4</em><em>(</em><em>Add</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
<em>4</em><em>x</em><em>=</em><em>1</em><em>2</em><em>(</em><em>After</em><em> </em><em>adding</em><em> </em><em>you</em><em> </em><em>will</em><em> </em><em>proceed </em><em>to</em><em> </em><em>divide</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>by</em><em> </em><em>4</em><em>)</em>
<em>x</em><em>=</em><em>3</em><em>(</em><em>x</em><em> </em><em>is</em><em> </em><em>3</em><em> </em><em>because</em><em> </em><em>4</em><em> </em><em>can</em><em> </em><em>divide</em><em> </em><em>1</em><em>2</em><em> </em><em>3</em><em> </em><em>times</em><em> </em><em>that's</em><em> </em><em>why</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>x</em><em> </em><em>as</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>3</em><em>)</em>
117 - 30 = 87
87/3 = 29
The car was towed 29 miles
hope this helps
8 1/2 would be the answer to this question