Answer:
25.2 kJ
Explanation:
The complete question is presented in the attached image to this answer.
Note that, the heat gained by the 2.00 L of water to raise its temperature from the initial value to its final value comes entirely from the combustion of the benzoic acid since there are no heat losses to the containing vessel or to the environment.
So, to obtained the heat released from the combustion of benzoic acid, we just calculate the heat required to raise the temperature of the water.
Q = mCΔT
To calculate the mass of water,
Density = (mass)/(volume)
Mass = Density × volume
Density = 1 g/mL
Volume = 2.00 L = 2000 mL
Mass = 1 × 2000 = 2000 g
C = specific heat capacity of water = 4.2 J/g.°C
ΔT = (final temperature) - (Initial temperature)
From the graph,
Final temperature of water = 25°C
Initial temperature of water = 22°C
ΔT = 25 - 22 = 3°C
Q = (2000×4.2×3) = 25,200 J = 25.2 kJ
Hope this Helps!!!
Answer:
1.52 M
Explanation:
Molarity of a solution is calculated as follows:
Molarity = number of moles (n) ÷ volume (V)
Based on the information given in this question,
Volume of soda (V) = 9.13 L
number of moles = 13.83 mol
Molarity = 13.83 ÷ 9.13
Molarity = 1.52 M
Cardiac muscles are found only in the heart and are also striated. Smooth muscles ... Identify and describe the appearance of the type of muscle tissue found in your heart<span>.</span>
2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!
Answer:
B
Explanation:
Because when you go to the doctors they say, "You need to get your x-rays done" not microwave