Answer: The correct answers are (A) and (C).
Explanation:
The expression from electrostatic force is as follows;

Here, F is the electrostatic force, k is constant, r is the distance between the charges and
are the charges.
The electrostatic force follows inverse square law. It is inversely proportional to the square of the distance between the charges. It is directly proportional to the product of the charges.
Like charges repel each other. There is a force of electrostatic repulsion between the like charges. Unlike charges attract each other. There is a force of electrostatic attraction between unlike charges.
The charges are induced on the neutral object when it is placed nearby the charged object without actually touching it.
Therefore, the true statements from the given options are as follows;
Like charges repel.
Unlike charges attract.
I don't think so as long as you make it apparent that the information comes the same source. So citing over and over again is unnecessary as long as it's clear that the information is from the same website or source. If you can't make it clear that they are from the same website source, it would a safe choice to continue to cite to avoid allegations of plagiarism.
Answer:
A. 4.47 m/s
Explanation:
As the ball oscillates, it mechanical energy, aka the total kinetic and elastics energy stays the same. For the ball to be at maximum speed, its elastic energy i 0 and vice versa. When the ball is at rest, its kinetic energy is 0 and its elastic energy is at maximum at 50 cm, or 0.5 m
1500 g = 1.5 kg






The formula for the density of a substance expressed in mass and volume is rho = mass/volume or p = m/v. Rearranging the formula to isolate volume gives the formula v = m/p. To solve for the problem given, this formula must be used. This gives a solution of:
v = m/p = 250 g/ 968 g/cm^3 = 0.258 cm^3 of sodium