1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
3 years ago
14

1:A pattern or grouping of stars that people imagine representing a figure, an animal or an object.

Physics
1 answer:
Nesterboy [21]3 years ago
7 0

Answer:

  • 1.constellation
  • 2.Probably a dwarf planet
You might be interested in
The lower the value of the coefficient of friction,the_the resistance to sliding​
malfutka [58]

Answer:

lower

Explanation:

The lower the value of the coefficient of friction, the lower the resistance to sliding.

The coefficient of friction is the ratio of the frictional force and the normal force pressing two surfaces in contact together.

               U  = \frac{F}{N}  

U is the coefficient of friction

F is the frictional force

N is the normal force

 We see that coefficient of friction is directly proportional to frictional force.

7 0
2 years ago
A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List the knowns in this problem.
astra-53 [7]

Answer:

a)

Y0 = 0 m

Vy0 = 15 m/s

ay = -9.81 m/s^2

b) 7.71 m

c) 3.06 s

Explanation:

The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards

Y(0) = 0 m

Vy(0) = 15 m/s

ay = -9.81 m/s^2 (negative because it points down)

Since acceleration is constant we can use the equation for uniformly accelerated movement:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

To find the highest point we do the first time derivative (this is the speed:

V(t) = Vy0 + a * t

We equate this to zero

0 = Vy0 + a * t

0 = 15 - 9.81 * t

15 = 9.81 * t

t = 0.654 s

At this time it will have a height of:

Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m

The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.

0 = Y0 + Vy0 * t + 1/2 * a * t^2

0 = 0 + 15 * t - 1/2 * 9.81 t^2

0 = 15 * t - 4.9 * t^2

0 = t * (15 - 4.9 * t)

t1 = 0 This is the moment it jumped into the air

0 = 15 - 4.9 * t2

15 = 4.9 * t2

t2 = 3.06 s This is the moment when it falls again.

3.06 - 0 = 3.06 s

5 0
2 years ago
What is created by the flow of electric current?
grin007 [14]
C.) a magnetic field is the correct answer…
7 0
2 years ago
Read 2 more answers
Two fishing boats depart a harbor at the same time, one traveling east, the other south. the eastbound boat travels at a speed 1
Novosadov [1.4K]
<span>they are travelling at right angles to each other.
 At any given instant they form a right triangle with their starting point
 </span>South bound <span>= x  [mi/h]
</span> East bound <span> = x+1 [mi/h]
 after five hours they will be
 d=5x
 and
 d=5(x+1)
 miles away from the starting point 
 (5x)^2+(5(x+1))^2=625
 25x^2+(5x+5)^2=625
 25x^2+25x^2+50x+25=625
 50</span>x^2+50x-600=0
<span> x^2+ x - 12=0
 (x+4)(x-3)=0
 take the postive value
 x= 3 mph the speed of south bound
 4mph east bound </span>
6 0
2 years ago
A slender rod is 80.0 cm long and has mass 0.390 kg . A small 0.0200-kg sphere is welded to one end of the rod, and a small 0.05
Keith_Richards [23]

Answer

given,

length of slender rod =80 cm = 0.8 m

mass of rod = 0.39 Kg

mass of small sphere = 0.0200 kg

mass of another sphere weld = 0.0500 Kg

calculating the moment of inertia of the system

I = \dfrac{ML^2}{12}+\dfrac{m_1L^2}{4}+\dfrac{mL^2}{4}

I = \dfrac{0.39\times 0.8^2}{12}+\dfrac{0.02\times 0.8^2}{4}+\dfrac{0.05\times 0.8^2}{4}

I =0.032\ kg.m^2

using conservation of energy

\dfrac{1}{2}I\omega^2 = (m_1-m_2)g\dfrac{L}{2}

\omega=\sqrt{\dfrac{(m_1-m_2)gL}{I}}

\omega=\sqrt{\dfrac{(0.05-0.02)\times 9.8 \times 0.8}{0.032}}

\omega=2.71 \rad/s

we know,

v = r ω

v = \dfrac{L}{2} \times 2.71

v = \dfrac{0.8}{2} \times 2.71

v = 1.084 m/s

3 0
3 years ago
Other questions:
  • A car traveling east at 46.8 m/s passes a trooper hiding at the roadside. the driver uniformly reduces his speed to 25.0 m/s in
    11·1 answer
  • An astronaut on a strange planet finds that she can jump a maximum horizontal distance of 16.0 m if her initial speed is 3.60 m/
    13·1 answer
  • In class we described the tidal forces that are responsible for raising and lowering thewater level near the shore of the ocean.
    9·1 answer
  • A steady beam of alpha particles (q = + 2e) traveling with constant kinetic energy 14 MeV carries a current of 0.20 µA.
    8·1 answer
  • If you went to a planet that had the twice the radius as Earth, but the same mass, a 1 kg pineapple would have a weight of
    10·1 answer
  • Consider a cylinder initially filled with 9.33 10-4 m3 of ideal gas at atmospheric pressure. An external force is applied to slo
    14·1 answer
  • A grapefruit falls from a tree and hits the ground 0.76 s later.
    9·1 answer
  • Superman does an exhibition run at a track meet. When he runs the 200 m
    9·1 answer
  • A satellite orbiting Mars (6.39x1023kg) experiences a gravitational field of 2.40N/kg. How far from Mars is the satellite orbiti
    5·1 answer
  • (50 POINTS) What types of transportation have been modified over the years to decrease
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!