<span>Your equation for the height of the stone at any time is h(t) = -16t2<span> + 128t + 32 .
From your equation, we can tell that you're defining the upward direction as
positive. We can also tell that you threw the stone upward, with an initial speed
as it left your hand of 128 feet per second, about 87 miles per hour ... a mighty toss indeed, and I think there's a man from the Chicago Cubs waiting outside
who'd like to talk to you.
Anyway, When the stone splashes into the water, h(t) = 0 .
</span></span>
<span>-16t²<span> + 128t + 32 = 0</span></span>
Divide each side by -16 :
t² - 8t - 2 = 0
I don't see any easy way to factor the expression on the left,
so I have to use the quadratic formula to solve this equation.
t = 4 plus and minus √18 .
t = +8.24 seconds
t = -0.24 second
Mathematically, both numbers are valid solutions.But when you apply
the equation to a real world situation, only the positive 't' makes sense.
So <u> t = 8.24 seconds</u>.
The force exerted by student A with his scooter is 306 N and that of student B is 204 N.
<h3>
Force applied by each student</h3>
The force exerted by each student is calculated from Newton's second law of motion.
F = ma
where;
- m is mass
- a is acceleration
F(A) = 127.5 x 2.4
F(A) = 306 N
F(B) = 120 x 1.7
F(B) = 204 N
Thus, the force exerted by student A with his scooter is 306 N and that of student B is 204 N.
Learn more about force here: brainly.com/question/12970081
#SPJ1
Answer:
the angle is about 67.79 degrees
Explanation:
We know that at its maximum height, the vertical component of the projectile's launching (initial) velocity (Vyi) is zero, so at that point it total velocity equals the horizontal component of the initial velocity (Vxi = 0.5 m/s)
We also know that the maximum height of the projectile is given by the square of its initial vertical component of the velocity (Vyi) divided by 2g, therefore half of such distance is :

we can use this information to find the y component of the velocity at that height via the formula:

Now we use the information that tells us the speed of the projectile at this height to be 1 m/s. That should be the result of the vector addition of the vertical and horizontal components:

Now we can use the arc-tangent to calculate the launching angle, since we know the two initial component of the velocity vector:

Explanation:
It is given that, the metal with the highest melting temperature is tungsten which melts at around 3400 K, T = 3400 K
We need to find the wavelength of the peak of the black body distribution for this temperature. It can be calculated using Wein's displacement law as :

k is the constant,



or

The wavelength of infrared is from 700 nm to 1 mm. So, the lies in infrared region of the spectrum. Hence, this is the required solution.
Answer: The differences between terrestrial planets and the giant planets are s follows-
- The inner planets namely Mercury, Venus, Earth and Mars are the terrestrial planets, whereas the outer planets namely Jupiter, Saturn, Uranus and Neptune are known as the outer planets.
- Inner planets are composed mainly of silicate materials as well as some metals, whereas the giant planets are comprised of water (in different states) and gases such as Hydrogen and Helium.
- The density of the inner planets are more in comparison to the outer planets, where earth has the highest of about 5.5 gm/cm³ and Saturn has the lowest of about 0.7 gm/cm³.
- Due to the location of the inner planets near to the sun, they have high boiling point, whereas outer planets are much far from the sun so they have a low boiling point.