At the lowest point on the Ferris wheel, there are two forces acting on the child: their weight of 430 N, and an upward centripetal/normal force with magnitude n; then the net force on the child is
∑ F = ma
n - 430 N = (430 N)/g • a
where m is the child's mass and a is their centripetal acceleration. The child has a linear speed of 3.5 m/s at any point along the path of the wheel whose radius is 17 m, so the centripetal acceleration is
a = (3.5 m/s)² / (17 m) ≈ 0.72 m/s²
and so
n = 430 N + (430 N)/g (0.72 m/s²) ≈ 460 N
I believe that the answer to the question provided above are the following;
x = 29.8410
y = 16.6794
z = -1.2642
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
-4.0 N
Explanation:
Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):
(1)
We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

And we can fidn the acceleration by using the formula:

where
v = 0 is the final velocity
u = 1.75 m/s is the initial velocity
t = 2.25 s is the time the box needs to stop
Substituting, we find

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)
Therefore, substituting into eq.(1) we find the force of friction:

Where the negative sign means the direction of the force is opposite to the motion of the box.
Answer: The question has some missing details. The initial velocity given as u = -6.5i + 17j + 13k and the final velocity v = -2.8i + 17j -9.3k.
a) = (1.82i - 9.69k)m/s2
b) magnitude = 9.85m/s2
c) direction = 280.64 degree
Explanation:
The detailed and step is shown in the attachment.