the missing word is clockwise moment. I hope this helps good luck
Answer:
Explanation:
Length = 1.00 m
If the length is 1.0, the vertical distance pivot to bob is cos 35 = 0.819
At the lowest point, vertical distance is 1.0, so the change is the difference, 0.181 meter
The potential energy of that height is converted to kinetic energy of motion, which determines the speed.
PE = KE
mgh = ½mV²
V = √(2gh) = 1.88 m/s
Answer:
Explanation:
Due to change in the position of 3 kg mass , the moment of inertia of the system changes , due to which angular speed changes . We shall apply conservation of angular momentum , because no external torque is acting .
Initial moment of inertia I₁ = M R² = 3 x 1 ² = 3 kg m²
Final moment of inertia I₂ = M R² = 3 x .3 ² = 0.27 kg m²
Applying law of conservation of angular momentum
I₁ ω₁ = I₂ ω₂
Putting the values ,
3 x .75 = .27 x ω₂
ω₂ = 8.33 rad / s
New angular speed = 8.33 rad /s .
Answer:
20.42 N/m
Explanation:
From hook's law,
F = ke ......................... Equation 1
Where F = Force applied to the spring., k = spring constant, e = extension.
Make k the subject of the equation,
k = F/e ................. Equation 2
Note: The force on the spring is equal to the weight of the mass hung on it.
F = W = mg.
k = mg/e................ Equation 3
Given: m = 250 g = 0.25 kg, e = 37-25 = 12 cm = 0.12 m.
Constant: g = 9.8 m/s²
Substitute into equation 3
k = (0.25×9.8)/0.12
k = 20.42 N/m.
Hence the spring constant = 20.42 N/m
Answer:
2.5
Explanation:2.5 +2.5 = 5.0