<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>
The latin name for hydra constellation is "Water snake"
Elastic potential energy stored in a spring is
(1/2) · (spring constant) · (stretch or compress)² .
PE = (1/2) · (100 N/m) · (0.1 m)²
PE = (50 N/m) · (0.01 m²)
PE = (50 · 0.01) (N · m / m²)
PE = 0.5 N · m
PE = 0.5 Joule
Answer:
when the steam starts coming out
Explanation: