Answer:
None are empirical formulas
Explanation:
All are actual compounds. An example of an empirical formula could be CH2O, the empirical formula for carbohydrates like glucose (C6H12O6).
From the information given, the total volume of rubbing alcohol is 88.2 ml
68.6 % of this volume is isopropanol.
We will assume 88.2 ml represents 100% volume, so the volume of water will be 31.4 %
The volume of isopropanol is
68.6/100 x 88.2 → 0.686 × 88.2 = 60.505 ml
The volume of isopropanol is 60.5 ml.
Volume of water will be 88.20 - 60.5 = 27.7 ml
(27.7 / 88.2 × 100 = 31.4% )
Adding 60.5 ml of isopropanol to 27.7 ml of water to make up 88.2 ml will give 68.6 % v/v isopropanol to water solution.
Answer: (E) 300 bq
Explanation:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
Radioactive decay process is a type of process in which a less stable nuclei decomposes to a stable nuclei by releasing some radiations or particles like alpha, beta particles or gamma-radiations. The radioactive decay follows first order kinetics.
Half life is represented by 
Half life of Thallium-208 = 3.053 min
Thus after 9 minutes , three half lives will be passed, after ist half life, the activity would be reduced to half of original i.e.
, after second half life, the activity would be reduced to half of 1200 i.e.
, and after third half life, the activity would be reduced to half of 600 i.e.
,
Thus the activity 9 minutes later is 300 bq.
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
The best and most correct answer among the choices provided by the question is the fourth choice "alcoholic fermentation"
Ethanol fermentation<span>, also called </span>alcoholic fermentation<span>, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing </span>ethanol<span> and carbon dioxide as a side-effect.</span>
I hope my answer has come to your help. God bless and have a nice day ahead!