3.16 X 10^-11 M is the [OH-] concentration when H3O+ = 1.40 *10^-4 M.
Explanation:
data given:
H30+= 1.40 X 10^-4 M\
Henderson Hasslebalch equation to calculate pH=
pH = -log10(H30+)
putting the values in the equation:
pH = -log 10(1.40 X 10^-4 M)
pH = 3.85 
pH + pOH =14
pOH = 14 - 3.85
 pOH = 10.15 
The OH- concentration from the pOH by the equation:
pOH = -log10[OH-]
10.5= -log10[OH-]
 [OH-] = 10^-10.5
  [OH-]  = 3.16 X 10^-11 is the concentration of OH ions when hydronium ion concentration is 1.40 *10^-4 M.
 
        
             
        
        
        
Answer:
The correct option is: a. reversible reaction
Explanation:
In thermodynamics, Gibb's free energy is the quantitative measure of the <u>spontaneity or feasibility </u>of a chemical reaction, at fixed temperature and pressure.
It can also be described as the <u>maximum available work obtained from a closed system</u>. This maximum work can only be achieved in a reversible process, <u>at fixed pressure and temperature.</u>
<u>The Gibb's free energy (ΔG) is given by</u>: ΔG = ΔH - T.ΔS
 
        
             
        
        
        
Answer:
χH₂ = 0.4946
χN₂ = 0.4130
χAr = 0.0923
Explanation:
The total pressure of the mixture (P) is:
P = pH₂ + pN₂ + pAr
P = 443.0 Torr + 369.9 Torr + 82.7 Torr
P = 895.6 Torr
We can find the mole fraction of each gas (χ) using the following expression.
χi = pi / P
χH₂ = pH₂ / P = 443.0 Torr/895.6 Torr = 0.4946
χN₂ = pN₂ / P = 369.9 Torr/895.6 Torr = 0.4130
χAr = pAr / P = 82.7 Torr/895.6 Torr = 0.0923
 
        
             
        
        
        
Watch melissa maribel explains it amazingly on her yt channel
        
             
        
        
        
The balanced chemical reaction for this would be written as:
2Mg + O2 = 2MgO
We use this reaction and the amount of the reactant given to calculate for the amount of magnesium oxide that is produced. We do as follows:
1.5 g Mg (1 mol / 24.31 g) ( 2 mol MgO / 2 mol Mg ) (40.30 g /1 mol ) = 2.49 g MgO produced