Answer:
The volume will also decrease.
Explanation:
This illustration clearly indicates Boyle's law.
Boyle's law states that the volume of a fixed mass of gas is directly proportional to the absolute temperature, provided the pressure remains constant. Mathematically, it is represented as:
V & T
V = KT
K = V/T
V1/T1 = V2/T2 =... = Vn/Tn
Where:
T1 and T2 are the initial and final temperature respectively, measured in Kelvin.
V1 and V2 are the initial and final volume of the gas respectively.
From the illustration above, the volume is directly proportional to the temperature. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume also will decrease.
Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The 
The value of the dissociation constant = 
![pK_a=-\log[K_a]](https://tex.z-dn.net/?f=pK_a%3D-%5Clog%5BK_a%5D)

Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α

Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
![K_a=\frac{[H^+][Ac^-]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BAc%5E-%5D%7D%7B%5BHAc%5D%7D)



Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
![[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%20%3D%200.00225M%5Ctimes%200.08448%3D0.0001901%20M)
The pH of the solution ;
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![=-\log[0.0001901 M]=3.72](https://tex.z-dn.net/?f=%3D-%5Clog%5B0.0001901%20M%5D%3D3.72)
To calculate the average mass of the element, we take the summation of the product of the isotope and the percent abundance. In this case, the equation becomes 186.207=187*0.626+185*x where x is the percent abundance of 185. The answer is 0.374 or 37.4%. This can also be obtained by 100%-62.6%= 37.4%.
Answer: Option (c) is the correct answer.
Explanation:
Wood is a mixture of different substances. Primarily it consists of cellulose, lignin, water etc.
When we heat wood then all these substance oxidize into the atmosphere even before they could melt.
Whereas iron, sodium chloride and ethanol all are the substances which can melt at any temperature.
Thus, we can conclude that out of the given options, wood, a mixture of different substances is a material that does not melt at any temperature.