Answer:
The production would be 25 wheels,
Lowest average cost is $ 123.75
Step-by-step explanation:
Given cost function,
![C(x) = 0.09x^3 - 4.5x^2 + 180x](https://tex.z-dn.net/?f=C%28x%29%20%3D%200.09x%5E3%20-%204.5x%5E2%20%2B%20180x)
Where,
x = number of wheel,
So, the average cost per wheel,
![A(x) = \frac{C(x)}{x}=\frac{0.09x^3-4.5x^2 + 180x}{x}=0.09x^2 - 4.5x + 180](https://tex.z-dn.net/?f=A%28x%29%20%3D%20%5Cfrac%7BC%28x%29%7D%7Bx%7D%3D%5Cfrac%7B0.09x%5E3-4.5x%5E2%20%2B%20180x%7D%7Bx%7D%3D0.09x%5E2%20-%204.5x%20%2B%20180)
Differentiating with respect to x,
![A'(x) = 0.18x - 4.5](https://tex.z-dn.net/?f=A%27%28x%29%20%3D%200.18x%20-%204.5)
Again differentiating with respect to x,
![A''(x) = 0.18](https://tex.z-dn.net/?f=A%27%27%28x%29%20%3D%200.18)
For maxima or minima,
![A'(x) = 0](https://tex.z-dn.net/?f=A%27%28x%29%20%3D%200)
![0.18x - 4.5 = 0](https://tex.z-dn.net/?f=0.18x%20-%204.5%20%3D%200)
![0.18x = 4.5](https://tex.z-dn.net/?f=0.18x%20%3D%204.5)
![\implies x = \frac{4.5}{0.18}=25](https://tex.z-dn.net/?f=%5Cimplies%20x%20%3D%20%5Cfrac%7B4.5%7D%7B0.18%7D%3D25)
For x = 25, A''(x) = positive,
i.e. A(x) is maximum at x = 25.
Hence, the production would be 25 wheels for the lowest average cost per wheel.
And, lowest average cost,
A(x) = 0.09(25)² - 4.5(25) + 180 = $ 123.75