Answer:
c. nine times as low.
Explanation:
Sound intensity is defined as the acoustic power transferred by a sound wave per unit of normal area to the direction of propagation:

Since the sound wave has a spherical wavefront of radius r, then the area is given by:

Here r is the distance from the source of the sound. Thus sound intensity decreases as:

Answer:
a) The velocity of the car is 7.02 m/s and the car is approaching to the police car as the frequency of the police car is increasing.
b) The frequency is 1404.08 Hz
Explanation:
If the police car is a stationary source, the frequency is:
(eq. 1)
fs = frequency of police car = 1200 Hz
fa = frequency of moving car as listener
v = speed of sound of air
vc = speed of moving car
If the police car is a stationary observer, the frequency is:
(eq. 2)
Now,
fL = frequecy police car receives
fs = frequency police car as observer
a) The velocity of car is from eq. 2:

b) Substitute eq. 1 in eq. 2:

Answer
given,
change in enthalpy = 51 kJ/mole
change in activation energy = 109 kJ/mole
when a reaction is catalysed change in enthalpy between the product and the reactant does not change it remain constant.
where as activation energy of the product and the reactant decreases.
example:
ΔH = 51 kJ/mole
E_a= 83 kJ/mole
here activation energy decrease whereas change in enthalpy remains same.
Answer:
8.85m/s
Explanation:
The potential energy the watermelon held before dropping is Ep=mgh=2*9.8*4=78.4J.
When it strikes the ground, all of its Ep will transfer into Ek, so 1/2*m*v^2=78.4.
We already knew that m=2, so insert that in, we will get the V^2=78.4 m/s, V=8.85 m/s
Answer:
V = 6 m/s
Explanation:
Given that,
Initial speed of an object is 20 m/s
Final speed of an object is 10 m/s
Time, t = 5 s
We need to find the average speed of the object during these 5 seconds. Let it is equal to V. Here, time is same. The average speed is given by :

So, the average speed of the object is 6 m/s.