Answer:
Let No be initial no of atoms
N = N0 / 2 after 1 half-life
N = N0 / 4 after 2 half-lives
So after 2 half-lives 20 of the 80 atoms remain
Answer:
![125\sqrt[4]{8}](https://tex.z-dn.net/?f=125%5Csqrt%5B4%5D%7B8%7D)
Explanation:
A number of the form

can be re-written in the radical form as follows:
![\sqrt[n]{a^m}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D)
In this problem, we have:
a = 1,250
m = 3
n = 4
So, if we apply the formula, we get
![1,250^{\frac{3}{4}}=\sqrt[4]{(1,250)^3}](https://tex.z-dn.net/?f=1%2C250%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B%281%2C250%29%5E3%7D)
Then, we can rewrite 1250 as

So we can rewrite the expression as
![=\sqrt[4]{(2\cdot 5^4)^3}=5^3 \sqrt[4]{2^3}=125\sqrt[4]{8}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B4%5D%7B%282%5Ccdot%205%5E4%29%5E3%7D%3D5%5E3%20%5Csqrt%5B4%5D%7B2%5E3%7D%3D125%5Csqrt%5B4%5D%7B8%7D)
Weight. Because there is less gravity on the moon.
Answer:
A)Object 1 has the greater magnitude of its momentum.
B)The objects 2 have the greater kinetic energy.
Explanation:
For object 1 :
v₁ = v ,m₁ = 2 m
For object 2 :
,m₂=m
We know that linear momentum given as
P = M V
M=Mass , V=Velocity
For object 1 :
P₁ =m₁ v₁
P₁ =2 m v
For object 2


We can say that object 1 have more momentum.
The kinetic energy






Therefore both the object 2 have higher kinetic energy.
D. distance
A light-year is the distance light would travel in 1 year.