Answer:

Explanation:
Impulse on an object is given by
.
However, it's also given as change in momentum (impulse-momentum theorem).
Therefore, we can set the change in momentum equal to the former formula for impulse:
.
Momentum is given by
. Because the truck's mass is maintained, only it's velocity is changing. Since the truck is being slowed from 26.0 m/s to 18.0 m/s, it's change in velocity is 8.0 m/s. Therefore, it's change in momentum is:
.
Now we plug in our values and solve:
(two significant figures).
Answer:
2.572 m/s²
Explanation:
Convert the given initial velocity and final velocity rates to m/s:
- 65 km/h → 18.0556 m/s
- 35 km/h → 9.72222 m/s
The motorboat's displacement is 45 m during this time.
We are trying to find the acceleration of the boat.
We have the variables v₀, v, a, and Δx. Find the constant acceleration equation that contains all four of these variables.
Substitute the known values into the equation.
- (9.72222)² = (18.0556)² + 2a(45)
- 94.52156173 = 326.0046914 + 90a
- -231.4831296 = 90a
- a = -2.572
The magnitude of the boat's acceleration is |-2.572| = 2.572 m/s².
Answer:

Explanation:
First of all, let's convert 2.0 rev into radians:

This means that the angular speed of the wheel is

The angle through which the wheel rotates in a time t is given by

And substituting t=1.0 s, we find

That statement is a big fat prevarication.
Magnetic field lines start at one Pole and end at the OTHER one.