Answer:
The reading of the scale during the acceleration is 446.94 N
Explanation:
Given;
the reading of the scale when the elevator is at rest = your weight, w = 600 N
downward acceleration the elevator, a = 2.5 m/s²
The reading of the scale can be found by applying Newton's second law of motion;
the reading of the scale = net force acting on your body
R = mg + m(-a)
The negative sign indicates downward acceleration
R = m(g - a)
where;
R is the reading of the scale which is your apparent weight
m is the mass of your body
g is acceleration due to gravity, = 9.8 m/s²
m = w/g
m = 600 / 9.8
m = 61.225 kg
The reading of the scale is now calculated as;
R = m(g-a)
R = 61.225(9.8 - 2.5)
R = 446.94 N
Therefore, the reading of the scale during the acceleration is 446.94 N
The question is missing alternatives. Here is the complete question.
An infrared spectrometer on Dawn found something unexpected on Ceres's surface. Its presence suggested that Ceres might have formed farther from the Sun, or been impacted by objects from a more-distant part of the solar system. What was this finding?
1. The fact that Ceres is covered with small dark particles that appear identical to the composition of Uranus's rings.
2. The presence of a thick cloud layer made of sulfuric acid, similar to what is observed at Venus.
3. The presence of clay-like minerals with ammonia bound up in them.
4. The infrared spectrum of Ceres's surface is essentially identical to that of most objects in the Kuiper Belt.
Answer: 3. The presence of clay-like minerals with ammonia bound up in them.
Explanation: The discovery of ammonia clay-like minerals in Ceres is surprising because it would be encoutered in planets that are far from the Sun, since ammonia requires colder temperatures, which is found beyond Jupiter's orbit, to condense. This finding can ascertain not only the origins of the dwarf planet as how the solar system was formed, were organized and evolved, because understanding where smaller planets are formed is important to determine their destiny.
The ampere (symbol: A) is the SI base unit of electric current equal to one coulomb per second.
The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 times 10–7 newton per meter of length.
Electric current is the time rate of change or displacement of electric charge.
One ampere represents the rate of 1 coulomb of charge per second.
The ampere is defined first (it is a base unit, along with the meter, the second, and the kilogram), without reference to the quantity of charge.
The unit of charge, the coulomb, is defined to be the amount of charge displaced by a one ampere current in the time of one second.
This is your answer friend. Hope it helps you.
U = mgh, Ek = 1/2*m*v^2
U = Ek (conservation of mechanical energy)
⇒ mgh = 1/2*m*v^2
∵g = 10, v = 20
⇒ 10h = 1/2*400
⇒ h = 20 (m)
Answer:
Two estimates
Explanation:
There are mainly two estimates used in the calculation of depreciation such as the useful life and the salvage value of an asset. The salvage value is defined as the predicted amount that will be obtained by a company from an asset when it is disposed at the end of the useful life of the particular asset. On the other hand, the useful life commonly refers to the estimation of how long the asset is useful for the company. This is different from the lifespan of the asset.