I think there's a typo because the answer I'm getting is very large.
This is what I'm getting
--------------------------------------
c = speed of light
c = 3.0 x 10^8 m/sec approximately
This is roughly 300 million meters per second
The time it takes the signal to reach the aircraft and come back is 1.4 x 10^3 seconds. Half of this time period is going one direction (say from the radar station to the aircraft), so (1.4 x 10^3)/2 = 7.0 x 10^2 seconds is spent going in this one direction.
distance = rate*time
d = r*t
d = (3.0 x 10^8) * (7.0 x 10^2)
d = (3.0*7.0) x (10^8*10^2)
d = 21.0 x 10^(8+2)
d = 21.0 x 10^10
d = (2.1 x 10^1) * 10^10
d = 2.1 x (10^1*10^10)
d = 2.1 x 10^11 meters
d = 210,000,000,000 meters (this is 210 billion meters; equivalent to roughly 130,487,950 miles)
Answer:
We will have <u>infinite solutions </u>to the system of linear equations.
Explanation:
Well, when we have two lines with the <u>same slopes and the same y-interception</u>, both of them <u>are overlapped, </u>so we will have <u>infinite solutions </u>to the system of linear equations.
This kind of system is called <u>dependent system.</u>
I hope it helps you!
Answer:
Very hot during the day and very cold at night.
Explanation:
Due to the thin atmosphere, they have very hot climate during the day time and very cold climate at night. This happens because they contain very low amounts of greenhouse gases. These gases retain the heat at night. The atmosphere also prevents excessive light and UV rays from entering. The thin atmosphere leads to many asteroids and comets hitting the surface of the planet. On earth, these asteroids usually, burn up in the mesosphere layer of the atmosphere. These asteroid collisions cause massive fires. This in turn, causes the temperature to increase during the day. During the night time, massive fires cannot burn due to the low temperature because of the lack of greenhouse gases.
<span>c. atoms are always in motion..............</span>
The change in pressure measured across a given distance called a Pressure Gradient. The pressure gradient creates a net force that is directed from higher to lower pressure and is called the Pressure Gradient Force. ... As air increases in velocity, it is deflected by the Coriolis Force.