1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
4 years ago
12

Thermodynamic Properties: Two identical, sealed, and well-insulated jars contain different gases at the same temperature. Each c

ontainer contains the same number of moles of gas. Container 1 contains helium, a monotomic gas with a molecular weight of 4.0 kg/kMol. Container 2 contains CO2, a triatomic linear molecule with a molecular weight of 44 kg/kMol. (a) Which gas has higher internal energy? (b) Which gas has higher translational energy? (c) Which gas has higher pressure?
Physics
1 answer:
LuckyWell [14K]4 years ago
3 0

Explanation:

Let us assume that the gas is ideal gas in the given problem.

(a)  Hence, expression for internal energy of a monoatomic gas is as follows.

            U = \frac{3}{2}RT

As there are three kinds of translations possible for a mono atomic ideal gas. Therefore, no rotation is possible.

And, according to equipartition theorem, each possible rotation, translation or vibration can contribute  to the internal energy of the system.

And, for Helium  a mono atomic ideal gas,

     U_{He} = \frac{3}{2}RT

For carbon dioxide, which is considered a linear triatomic molecule, there are  3 translations possible, 2 rotations possible and 4 vibrations possible.

But vibrations contribute RT to the energy

So, U_{CO_{2}} = \frac{3}{2}RT + \frac{2}{2}RT + 4RT = \frac{13}{2}RT

Therefore,  has higher internal energy.

(b) Irrespective of the type of the molecule, there are only 3 translation states possible. So, translational kinetic energy is equal to

               U_{trans} = \frac{3}{2}RT

is equal for both helium and carbon dioxide.

(c)  It is known that the ideal gas equation is given as follows.

                  PV = nRT

Here, it is given that

T is same (same temperature)

n is same (no of moles of gas)

V is same (identical container)

R is a constant.

So, P is equal for both gases.

You might be interested in
A charge alters the space around it. What is this alteration of space called? Electric ether Electric Force Electric field Charg
ycow [4]

Explanation:

A charge alters the space around it. This alteration of space is called the electric field. It is also defined as the electric force acting on a charged particle per unit test charge. It is given by :

E=\dfrac{F}{q}

Where

F is the electric force, F=\dfrac{kq_1q_2}{r^2}

The direction of electric field is in the direction of electric force. For a positive charge, the direction of electric field lines are outwards and for a negative charge, the direction of field lines are inwards.

Hence, the correct option is (c) "electric field".

6 0
3 years ago
a_______ is a region where the magnetic fields of a large number of atoms are lined up parallel to a magnets field.
patriot [66]

Answer:

Magnetic Domain

Explanation:

5 0
3 years ago
Read 2 more answers
The average speed of a nitrogen molecule in air is about 6.70×102 m/s, and its mass is 4.68×10-26 kg.
Otrada [13]

Answer:

a)   a = 3.06 10¹⁵ m / s , b)    F= 1.43  10⁻¹⁰ N, c)    F_total = 14.32 10⁻²⁶ N

Explanation:

This exercise will average solve using the moment relationship.

a ) let's use the relationship between momentum and momentum

          I = ∫ F dt = Δp

          F t = m v_{f} - m v₀

          F = m (v_{f} -v₀o) / t

 in the exercise indicates that the speed module is the same, but in the opposite direction

          F = m (-2v) / t

if we use Newton's second law

          F = m a

we substitute

            - 2 mv / t = m a

            a = - 2 v / t

let's calculate

            a = - 2 4.59 10²/3 10⁻¹³

            a = 3.06 10¹⁵ m / s

b)      F= m a

        F= 4.68 10⁻²⁶ 3.06 10¹⁵

        F= 1.43  10⁻¹⁰ N

c) if we hit the wall for 1015 each exerts a force F

            F_total = n F

            F_total = n m a

            F_total = 10¹⁵  4.68 10⁻²⁶ 3.06 10¹⁵

            F_total = 14.32 10⁻²⁶ N

8 0
3 years ago
Q2. You push a crate up a ramp with a force of 10 N. Despite your pushing, the crate slides down the ramp 4 m. How much work did
Ksivusya [100]

Answer:

40 J

Explanation:

From the question given above, the following data were obtained:

Force (F) = 10 N

Distance (s) = 4 m

Workdone (Wd) =?

Work done is simply defined as the product of force and distance moved in the direction of the force. Mathematically, we can express the Workdone as:

Workdone = force × distance

Wd = F × s

With the above formula, we can obtain the workdone as follow:

Force (F) = 10 N

Distance (s) = 4 m

Workdone (Wd) =?

Wd = F × s

Wd = 10 × 4

Wd = 40 J

Thus, 40 J of work was done.

5 0
3 years ago
A banana peel has lots of friction.<br> True or False
olga_2 [115]

Answer:

False

Explanation:

I learned it the hard way trust me T^T

3 0
3 years ago
Other questions:
  • A uranium and iron atom reside a distance R = 37.50 nm apart. The uranium atom is singly ionized; the iron atom is doubly ionize
    14·1 answer
  • The Richter scale measures the __ of an earthquake.<br>​
    12·2 answers
  • According to Coulomb's law, when the distance between two point charges doubles, what happens to the electric force acting betwe
    5·1 answer
  • Why are asteroids and comets important to our understanding of solar system history?
    5·1 answer
  • 1. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its
    7·2 answers
  • NO LINKS!!!!!! Help its urgent, PLEASE HELP!!!!!!!!!!!!!!!!
    14·1 answer
  • How can a magnet attract or repel another magnet even if they are not touching?
    14·1 answer
  • 3) Скорость автомобиля увеличилась от 10 м/с до 20 м/с. Во сколько раз увеличилась его
    12·1 answer
  • In a longitudinal wave, amplitude can be measured
    11·1 answer
  • An object weighs 2.6 N in air and 2.2N when completely immersed in water. Determine the relative density of the object (2mks​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!