B because it shows the COOCH
With various extractions the amount of material left in the trash will be lower, ergo the extraction will be more perfect. Various extractions with fewer amounts of solvent are more efficient than a single extraction with a huge amount of solvent.
<u>Explanation:</u>
Surely multiple extractions are better than the single large extraction. Because extraction is about maximizing outside field communication between the two solvents, and you easily get more surface area contact with fewer amounts.
You can merge two smaller portions quicker and more completely than with large portions.
Answer:
Potassium was the first metal to be isolated by electrolysis. It was discovered by the English chemist Sir Humphry Davy by decomposing molten potassium hydroxide (KOH) with a voltaic battery.
Explanation:
The atomic number (Z) uniquely identifies a chemical element. In an uncharged atom, the atomic number is also equal to the number of electrons.
The atomic number, Z, should not be confused with the mass number, A, which is the number of nucleons, the total number of protons and neutrons in the nucleus of an atom.
In this video Kristine Born explains this two concepts in more detail.
0.0102 moles Na₂CO₃ = 1.08g of Na₂CO₃ is necessary to reach stoichiometric quantities with cacl2.
<h3>Explanation:</h3>
Based on the reaction
CaCl₂ + Na₂CO₃ → 2NaCl + CaCO₃
1 mole of CaCl₂ reacts per mole of Na₂CO₃
we have to calculate how many moles of CaCl2•2H2O are present in 1.50 g
- We must calculate the moles of CaCl2•2H2O using its molar mass (147.0146g/mol) in order to answer this issue.
- These moles, which are equal to moles of CaCl2 and moles of Na2CO3, are required to obtain stoichiometric amounts.
- Then, we must use the molar mass of Na2CO3 (105.99g/mol) to determine the mass:
<h3>
Moles CaCl₂.2H₂O:</h3>
1.50g * (1mol / 147.0146g) = 0.0102 moles CaCl₂.2H₂O = 0.0102moles CaCl₂
Moles Na₂CO₃:
0.0102 moles Na₂CO₃
Mass Na₂CO₃:
0.0102 moles * (105.99g / mol) = 1.08g of Na₂CO₃ are present
Therefore, we can conclude that 0.0102 moles Na₂CO₃ is necessary.to reach stoichiometric quantities with cacl2.
To learn more about stoichiometric quantities visit:
<h3>
brainly.com/question/28174111</h3>
#SPJ4