Should I eat my chicken nuggets if my throat is hurting
Answer: 1 mol of
will be produced from this reaction.
Explanation: Reaction follows,

As seen from the balanced chemical equation above, we get
For every 3 moles of Aluminium and 3 moles of
, 1 mole of
is formed.
For every 3 moles of Aluminium and 3 moles of
, 1 mole of
is formed.
For every 3 moles of Aluminium and 3 moles of
, 3 moles of
is formed.
For every 3 moles of Aluminium and 3 moles of
, 6 moles of
is formed.
ANSWER:
4 a) Specific elements have more than one oxidation state, demonstrating variable valency.
For example, the following transition metals demonstrate varied valence states:
,
,
, etc.
Normal metals such as
also show variable valencies. Certain non-metals are also found to show more than one valence state 
4 b) Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons.
For example, Carbon-14 is a naturally occurring radioactive isotope of carbon, having six protons and eight neutrons in the nucleus. However, C-14 does not last forever and there will come a time when it loses its extra neutrons and becomes Carbon-12.
5 a)
→
5 b)
→ 
5 c)
→
(already balanced so don't need to change)
5 d)
→
5 e)
→ 
EXPLANATION (IF NEEDED):
1. Write out how many atoms of each element is on the left (reactant side) and right (product side) of the arrow.
2. Start multiplying each side accordingly to try to get atoms of the elements on both sides equal.
EXAMPLE OF BALANCING:
Answer:
14.434 r.a.m.
Explanation:
- The atomic mass of an element is a weighted average of its isotopes in which the sum of the abundance of each isotope is equal to 1 or 100%.
∵ The atomic mass of N = ∑(atomic mass of each isotope)(its abundance)
∴ The atomic mass of N = (atomic mass of N-14)(abundance of N-14) + (atomic mass of N-16)(abundance of N-16)
atomic mass of N-14 = 14.0 r.a.m, abundance of N-14 = percent of N-14/100 = 78.3/100 = 0.783.
atomic mass of N-16 = 16.0 r.a.m, abundance of N-16 = percent of N-16/100 = 21.7/100 = 0.217.
∴ The atomic mass of N = (atomic mass of N-14)(abundance of N-14) + (atomic mass of N-16)(abundance of N-16) = (14.0 r.a.m)(0.783) + (16.0 r.a.m)(0.217) = 14.434 r.a.m.
<u>Answer:</u> The concentration of solution is 0.342 M
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (Sodium chloride) = 15 g
Molar mass of sodium chloride = 58.5 g/mol
Volume of solution = 750 mL
Putting values in above equation, we get:

Hence, the concentration of solution is 0.342 M