16287.50 I think? I just googled it though so I’m not sure if it’s correct.
Answer:
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Explanation:
Considering the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution as:
Where Ka is the dissociation constant of the acid.
pKa of phenolphthalein = 9.40
pH = 10.9
So,
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Option d lo siento si es incorrecto
Answer:
Forces between similar molecules are said to be <em>cohesive</em> while those between different types of molecules are said to be <em>adhesive</em>.
Water 'beads' due to its strong <em>cohesive</em> forces. The meniscus of water in a glass tube is <em>concave</em> because the <em>adhesive</em> forces are strong.
Explanation:
The water in a tube has stronger adhesive forces between the water and glass molecules, so the cohesive forces between water molecules are weaker. That makes the water 'ascend' through the tube, giving a concave form of the meniscus. Another example is mercury, which is the opposite. In this case, the cohesive forces are stronger than the adhesive ones, thus the meniscus is convex.