Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Answer:
(n, l, m sub l, m sub s)
N: principle quantum number (1,2,3,4,etc)
l: angular momentum quantum number, the shape (l has to be at least 1 less than n, but can be 0 depending on n)
M sub l: magnetic quantum number (l determines this number)
M sub s: spin quantum number (can only ever be 1/2 or -1/2)
Explanation:
Answer:
Noble gases have a complete valence electron shell making them stable and nonreactive.
Explanation:
I'm not quiet sure...possibly an ionic bond.
Answer:
C. The model shows beta decay, whichis not tyoe of nuclear fission