30 mL. The two compounds need to balance each other out.
Answer:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (atoms, molecules, or ions)
Explanation:
This number is Avogadro's number. The concept of the mole can be used to convert between mass and number of particles. its used to compare very large numbers.
Answer:
2726.85 °C
Explanation:
Given data:
Initial pressure = 565 torr
Initial temperature = 27°C
Final temperature = ?
Final pressure = 5650 torr
Solution:
Initial temperature = 27°C (27+273 = 300 K)
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
T₂ = P₂T₁ /P₁
T₂ = 5650 torr × 300 K / 565 torr
T₂ = 1695000 torr. K /565 torr
T₂
= 3000 K
Kelvin to degree Celsius:
3000 K - 273.15 = 2726.85 °C
Answer:
the answer is c. [.4r]3d104324p
Answer:
10 moles of SO₂ are produced when 5 moles of FeS₂
Explanation:
Stoichiometry: it is the theoretical proportion in which the chemical species are combined in a chemical reaction. The stoichiometric equation of a chemical reaction relates molecules or number of moles of all the reagents and products that participate in the reaction.
In other words, stoichiometry establishes relationships between the molecules or elements that make up the reactants of a chemical equation with the products of said reaction. The relationships established are molar relationships (that is, moles) between the compounds or elements that make up the chemical equation.
The stoichiometric coefficients of a chemical reaction indicate the proportion in which said substances react.
Taking into account the above, you can apply the following rule of three: by stoichiometry if 4 moles of FeS₂ produce 8 moles of SO₂, then when reacting 5 moles of FeS₂ how many moles of SO₂ will they produce?

moles of SO₂= 10
<u><em>10 moles of SO₂ are produced when 5 moles of FeS₂</em></u>