Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
Answer:
xhhhvxhxgjhgogftsvicsdgfsytdhdrrygyfhd
Explanation:
ywwgzwu9wu9wsussg the the
I think you can only have 3 water molecules because you need 2 hydrogen molecules in every water molecule and you have 6 hydrogen molecules so 6/2=3 and the reactant that is limited would be hydrogen since it limits the amount of water molecules you can have
Answer:
Mean
Explanation:
The mean of a series of measurements is calculated when a<em>ll the measurements are added up and then divided by the number of measurements taken</em>, as follows:
- Sum of Measurements = 20.73 + 20.76 + 20.68 + 20.75 = 82.92
As<u> there are 4 measurements</u>, the mean is: