Answer:
Balancing the equation
2KMnO₂+10KCl+8H₂SO₄⇒2MnSO₄+6K₂SO₄+8H₂O+5Cl₂
Using the Rydberg formula, the spectral line of H - atom is suitable for this purpose is Paschen, ∞ → 3.
- Using the Rydberg formula;
1/λ = RH(1/nf^2 - 1/ni^2)
Given that;
λ = wavelength
RH = Rydberg constant
nf = final state
ni = initial state
- When final state = 3 and initial state = ∞
Then;
1/λ = 1 × 10^7 m-1 (1/3^2 - 1/ ∞^2)
1/λ = 1 × 10^7 m-1 (1/3^2 )
λ = 900 nm
Hence, the correct answer is Paschen, ∞ → 3
Learn more about the Rydberg formula; brainly.com/question/17753747
Answer: The volume of gas is 3020 ml
Explanation:
According to ideal gas equation:
P = pressure of gas = 821.4 torr = 1.08 atm (760 torr = 1atm)
V = Volume of gas in L = ?
n = number of moles =
R = gas constant =
T =temperature =
Thus volume of gas is 3020 ml
Answer: penetration is the ability of an electron in a given orbital to approach the nucleus closely. Shielding refers to the fact that core electrons reduce the degree of nuclear attraction felt by the orbital electrons. Shielding is the opposite of penetration. The most penetrating orbital is the least screening orbital. The order of increasing shielding effect/decreasing penetration is s<p<d<f.
Explanation:
The order of penetrating power is 1s>2s>2p>3s>3p>4s>3d>4p>5s>4d>5p>6s>4f....
Since the 3p orbital is more penetrating than the 3d orbital, it will lie nearer to the nucleus and thus possess lower energy.