I’m trying to get my points up I have the same question
Answer:
The running horizontal speed should be larger than 1.29 m/s.
Explanation:
In order for the swimmer to just miss the bone-breaking ledge, her horizontal speed must be

in which we need to know how long we she be diving through the air. To determine that, recall the formula for the distance made by an object with acceleration (in this case it is the gravitational acceleration) with no initial (vertical) velocity:

from which it follows that (for non-negative t)

This result can be used in the initial inequality:

The diving lady better gets a speed larger than 1.29 m/s to avoid landing on the ledge.
Answer:
45.93°
Explanation:
The angle of incidence is given as 32.7°
The refractive index of the water that is 
Refractive index of the air that is
(because the refractive index of air is 1 )
We have to find the angle at which the light leave the water means angle of refraction
So according to snell's law 


r =45.93°
So the light leave the water at an angle of 45.93°
Answer:
about 42.35 m/s
Explanation:
Use the equation for accelerated motion (g), and with zero initial velocity that doesn't include time:

which for our case would reduce to:

then the velocity just before hitting would be about 42.35 m/s
<span><span>centic<span>10-2</span></span><span>millim<span>10-3</span></span><span>microu [footnote 2]<span>10-6</span></span><span>nanon<span>10-<span>9
</span></span></span></span>