Answer:
no..
Explanation:
in balanced force it will or in this case u would stay still or u would move at the same speed.. but when u jumps the speed changes..so this is an unbalanced force
hope my ans helps
pls give brainliest to my answer
be sure to follow me
stay safe
have a good day
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
Answer:
c. There would be a series of spectral lines in hydrogen with the longest wavelength one at 122 nm.
d. The hydrogen atom binds its electron more tightly than the sodium atom does, and would require more energy to remove its electron completely.
Explanation:
The hydrogen atom which changes from the excited state to the lower ground state, it emits light having a wavelength of 122 m. And the sodium atom also gets excited and emits light at 589 nm when it moves from the 1st excited state to the lowest excited state.
Therefore, when the electrons jumps from the 1st excited state to the ground state, only one wavelength is observed as there is only one transition.
The hydrogen atom will bind the electron tightly but the sodium atom does not and would require more energy to remove the electron the electron completely as the binding energy is higher when the electron is closer to the nucleus.
Answer:Climatic processes affect the dynamics of Earth's ice sheets and glaciers, and along ... by abrupt events and by continuous reshaping of Earth's surface from surface ... Forecasting natural disasters, including the timing and size of earthquakes, the . Last, human activity has a profound impact on water resources, landscape
Explanation:
step by step