Answer:
103.1 V
Explanation:
We are given that
Initial circumference=C=168 cm

Magnetic field,B=0.9 T
We have to find the magnitude of the emf induced in the loop after exactly time 8 s has passed since the circumference of the loop started to decrease.
Magnetic flux=
Circumference,C=

cm



When t=0



E=

t=8 s
B=0.9


Answer:
C: equal to mg
Explanation:
in free-fall, gravity is always the net force on an object
Answer:

Now,buyantant force

so;




Now,



And now,



Hence that,specific density of a given body is 3
please mark me as brainliest, please
Answer:
a) During the reaction time, the car travels 21 m
b) After applying the brake, the car travels 48 m before coming to stop
Explanation:
The equation for the position of a straight movement with variable speed is as follows:
x = x0 + v0 t + 1/2 a t²
where
x: position at time t
v0: initial speed
a: acceleration
t: time
When the speed is constant (as before applying the brake), the equation would be:
x = x0 + v t
a)Before applying the brake, the car travels at constant speed. In 0.80 s the car will travel:
x = 0m + 26 m/s * 0.80 s = <u>21 m </u>
b) After applying the brake, the car has an acceleration of -7.0 m/s². Using the equation for velocity, we can calculate how much time it takes the car to stop (v = 0):
v = v0 + a* t
0 = 26 m/s + (-7.0 m/s²) * t
-26 m/s / - 7.0 m/s² = t
t = 3.7 s
With this time, we can calculate how far the car traveled during the deacceleration.
x = x0 +v0 t + 1/2 a t²
x = 0m + 26 m/s * 3.7 s - 1/2 * 7.0m/s² * (3.7 s)² = <u>48 m</u>
Explanation:
At first it is in 14m position but position doesn't matter in displacement, similar case for time taken.
So at first it travels 6m in positive direction.
So displacement= 6m
Then it travels 13 in opposite or negative direction.
So displacement = 6 -13 m = -7 m
Hope it helps ya