I de momento que no what now what the que no se puede el gobierno del presidente y el gobierno
Answer:
Rolling friction is much smaller than sliding friction because Rolling friction is considerably less than sliding friction as there is no work done against the body that is rolling by the force of friction. For a body to start rolling a small amount of friction is required at the point where it rests on the other surface, else it would slide instead of roll.
Rolling Friction example: Anything with weels (cars,skateboards) or a ball rooling.
Sliding Friction example: Bicycle brakes,skinning your knee walking,writing.
Answer:
Distance is path length covered by particle. When particle moves along half circle, it covers half the circumference therefore distance covered is (2×pi×r)/2 = pi× r. ... Hence displacement is equal to diameter or 2 times the radius of circle.
Let current be I, charge be Q and time be t.
Here we are provided with,
I = 0.72A
t = 4s / 60s / 180s / 7s / 0.5s
We know,
I = Q/t
Case I
---------
When, t = 4s
0.72 = Q/4
Q = 0.72 * 4 = 2.88C
Case II
----------
When, t = 60s
0.72 = Q/60
Q = 0.72 * 60 = 43.2C
Case III
-----------
When, t = 180s
0.72 = Q/180
Q = 0.72 * 180 = 129.6C
Case IV
-----------
When, t = 7s
0.72 = Q/7
Q = 0.72 * 7 = 5.04C
Case V
----------
When, t = 0.5s
0.72 = Q/0.5
Q = 0.72 * 0.5 = 0.36C
Answer:
The height of the cliff is 90.60 meters.
Explanation:
It is given that,
Initial horizontal speed of the stone, u = 10 m/s
Initial vertical speed of the stone, u' = 0 (as there is no motion in vertical direction)
The time taken by the stone from the top of the cliff to the bottom to be 4.3 s, t = 4.3 s
Let h is the height of the cliff. Using the second equation of motion in vertical direction to find it. It is given by :



h = 90.60 meters
So, the height of the cliff is 90.60 meters. Hence, this is the required solution.