<h2>Hey there!</h2>
The Force "F" applied on the unit electric charge "q" at a point describes the electric field.
<h3>☆ Formula to find electric charge:</h3>
<h2>Hope it helps </h2>
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
D. Decreasing its temperature
Explanation:
Decreasing the temperature of the carbon dioxide gas to be dissolved in the carbonated drink will most likely increase the solubility of the gas in the drink.
Temperature has considerable effects on the solubility of gases in liquids.
- Dissolution involves the surrounding of ions by water molecules, in this case, the carbon dioxide gas is to be surrounded by the liquid beverage medium.
- Increasing pressure increases the rate at which gases are soluble. At high pressure, the gases are brought more in contact with the liquid medium.
- Decreasing temperature aids gas solubility.
- If the temperature of gases are increased, they will not want to stay in solution as they gain a high amount of kinetic energy.
- Therefore, it will increase their randomness and the urge to leave the solution.
- Decrease in temperature and increase in pressure makes gas solubility to be fast.
Learn more:
Rate of chemical reactions brainly.com/question/6281756
#learnwithBrainly