Answer: -31.36 m/s
Explanation:
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told it was "dropped", this means it goes to ground in free fall)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Finally:
Note the negative sign is because the direction of the bag is downwards as well.
The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Answer:
(a)0.0002778
(b)
Explanation:
(a) The minute hand has a period of 60 minutes ( or 60 * 60 = 3600 seconds) for 1 circle. Its frequency per second would be
1 / 3600 = 0.0002778
(b) The hour hand has a period of 24 hours ( or 24*60 * 60 = 86400
seconds) for 1 circle. Its frequency per second would be

The interstellar medium is the matter as well as the radiations that are found in the galaxies occupying the spaces between the star systems.
Interstellar medium is mainly composed of hydrogen that is followed by helium and trace amounts of nitrogen, oxygen and carbon (considered traces when compared to amount of hydrogen).
Therefor, the right choice is:
<span>A. Water, Carbon dioxide, and Hydrogen</span>