1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arsen [322]
3 years ago
10

The free fall motion shown in theimage must be​

Physics
1 answer:
tatiyna3 years ago
3 0

Answer:

Kinetic Energy?

Explanation:

You might be interested in
How does football use energy to influence or change matter?
likoan [24]
Your constantly using your body to move around
3 0
3 years ago
What speed should a satellite of mass 4,900 kg moving around
Rudiy27

Based on the calculations, the speed required for this satellite to stay in orbit is equal to 1.8 × 10³ m/s.

<u>Given the following data:</u>

  • Gravitational constant = 6.67 × 10⁻¹¹ m/kg²
  • Mass of Moon = 7.36 × 10²² kg
  • Distance, r = 4.2 × 10⁶ m.

<h3>How to determine the speed of this satellite?</h3>

In order to determine the speed of this satellite to stay in orbit, the centripetal force acting on it must be sufficient to change its direction.

This ultimately implies that, the centripetal force must be equal to the gravitational force as shown below:

Fc = Fg

mv²/r = GmM/r²

<u>Where:</u>

  • m is the mass of the satellite.
  • M is mass of the Moon.

Making v the subject of formula, we have;

v = √(GM/r)

Substituting the given parameters into the formula, we have;

v = √(6.67 × 10⁻¹¹ × 7.36 × 10²²/4.2 × 10⁶)

v = √(1,168,838.095)

v = 1,081.13 m/s.

Speed, v = 1.8 × 10³ m/s.

Read more on speed here: brainly.com/question/20162935

#SPJ1

8 0
2 years ago
Female scientist who came to america to study starts at harvard
krok68 [10]
Is that a question? If it is not what its the question?
7 0
3 years ago
A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per un
Zarrin [17]

Answer:

steady state temperature =88.7deg C

t=time within  1 deg C of it steady state is 8.31s

Explanation:

A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per unit length of 0.01 Ω/m. If a current of 100 A flows through the wire and the convection coefficient is 500W/m2K, what is the steady state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature within 1-degC of the steady state value? The density of the wire is 8,000kg/m3, its heat capacity is 500 J/kgK and its thermal condu

The diameter of the wire is known to be=1mm

properties=

The density of the wire is 8,000 kg/m3,

heat capacity is 500 J/kgK

themal conductivity is 20W/m.K

electrical resistance per unit length of 0.01 Ω/m

from lump capavity method

B_{i} =\frac{hr/2}{k}

500*(2.5*10^-4)/20

0.006<0.1

we know also, to find steady state temperature

\piDh(T-Tinf)=I^{2} R_{e}

make T the subject of the equation , we have

T=25+\frac{100^2*0.01}{\pi*0.001*500 }

T=88.7 degC

rate of chnage in temperature

dT/dt=\frac{I^2*Re}{rho*c*\pi*D^2/4 } -\frac{4h}{rho*c*D} (T-Tinf)

at t=o and integrating both sides\frac{T-Tinf-(I^2*Re/\pi*Dh) }{Ti-Tinf-(I^2*Re/\pi*Dh } =exp\frac{-4ht}{rho*c*D}

we have

\frac{87.7-25-63.7}{25-25-63.7} =exp\frac{4*500t}{8000*500*0.001}

t=8.31s

steady state temperature =88.7deg C

t=time within  1 degC of it steady stae is 8.31s

7 0
3 years ago
A person who weighs 800N on the earth's surface will weigh 200N at what height above the earth
Marina86 [1]

Answer: 6,400 km

Explanation:

The weight of a person is given by:

W=mg

where m is the mass of the person and g is the acceleration due to gravity. While the mass does not depend on the height above the surface, the value of g does, following the formula:

g=\frac{GM}{r^2}

where

G is the gravitational constant

M is the Earth's mass

r is the distance of the person from the Earth's center


The problem says that the person weighs 800 N at the Earth's surface, so when r=R (Earth's radius):

800 N= W=mg=m \frac{GM}{R^2} (1)

Now we want to find the height h above the surface at which the weight of the man is 200 N:

200 N = W' = mg' = m \frac{GM}{(R+h)^2} (2)

If we divide eq.(1) by eq.(2), we get

\frac{800 N}{200 N}=\frac{W}{W'}=\frac{(R+h)^2}{R^2}

4=\frac{(R+h)^2}{R^2}

By solving the equation, we find:

4R^2 = (R+h)^2=R^2+2Rh+h^2\\h^2 +2Rh-3R^2 =0

which has two solutions:

h=-3R --> negative solution, we can ignore it

h=R --> this is our solution

Since the Earth's radius is R=6.4\cdot 10^6 m, the person should be at h=R=6.4\cdot 10^6 m=6400 km above Earth's surface.

5 0
3 years ago
Other questions:
  • 10. The energy of moving objects is called
    5·2 answers
  • A coach wants her team to have fun, win some games, and be a productive unit. What is the most important personality trait the c
    8·2 answers
  • A gas in a piston-cylinder assembly undergoes a compression process for which the relation between pressure and volume is given
    8·1 answer
  • Infared waves can be used to _____
    5·1 answer
  • Why is the answer B and not E?
    8·2 answers
  • When the gun fires a projectile with a mass of 0.040 kg and a speed of 380 m/s, what is the recoil velocity of the shotgun and a
    12·1 answer
  • Need help ASAP please and thank you
    9·2 answers
  • [ ] is the displacement of an object during a specific unit of time <br><br>whats the answer? ​
    11·2 answers
  • Which of the following is the least important factor of a personal fitness program? A. the individual's personal conditions B. t
    11·1 answer
  • Another engine reaches its top speed in 7.5s. It is able to perform 250,000 J of wok in that time. How much power this engine ha
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!