Answer:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
The ball rotates 6.78 revolutions.
Explanation:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
At the bottom the ball has the following angular speed:

Now, we need to find the distance traveled by the ball (L) by using θ=28° and h(height) = 2 m:
To find the revolutions we need the time, which can be found using the following equation:
(1)
So first, we need to find the acceleration:
(2)
By entering equation (2) into (1) we have:

Since it starts from rest (v₀ = 0):

Finally, we can find the revolutions:

Therefore, the ball rotates 6.78 revolutions.
I hope it helps you!
Hubble space telescope, Hubble deep field guide, moon, mercury, Saturn, sun, galaxy messier 101
Answer:
A. 16.9 m
Explanation:
I think this is the answer i am not sure
but hope it helps
Explanation:
We need to calculate the speed of light in each materials
(I). Gallium phosphide,
The index of refraction of Gallium phosphide is 3.50
Using formula of speed of light
....(I)
Where,
= index of refraction
c = speed of light
Put the value into the formula


(II) Carbon disulfide,
The index of refraction of Gallium phosphide is 1.63
Put the value in the equation (I)


(III). Benzene,
The index of refraction of Gallium phosphide is 1.50
Put the value in the equation (I)


Hence, This is the required solution.