Answer:
Initial velocity, U = 28.73m/s
Explanation:
Given the following data;
Final velocity, V = 35m/s
Acceleration, a = 5m/s²
Distance, S = 40m
To find the initial velocity (U), we would use the third equation of motion.
V² = U² + 2aS
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
35² = U + 2*5*40
1225 = U² + 400
U² = 1225 - 400
U² = 825
Taking the square root of both sides, we have;
Initial velocity, U = 28.73m/s
Time = 25s
speed = 10m/min
= 10m / 60
= (1/6)m/s
distance = speed × time
= 25 × (1/6)
=4.167m
When an astronaut travels from the earth to the moon, her weight changes, but her mass remains constant. <em>(C ).</em>
Answer:
this vehichle has 896,000 jules of energy
Explanation: KE=1/2mv squared, KE is Kinetic energy. m is mass and v is velocity