Answer:
11
Step-by-step explanation:
Solution for this problem is in this picture.
There are many reasons one may want to simplify, rearranging to find specific values - or maybe just making it simpler
Well, let's do some examples:
y(x(3+2)) +2 = -2y +2 <span>< I just made this one up, it looks really complicated right now, none the less it can be simplified easily
</span>y(3x+2x) + 2 = - 2y +2
3xy + 2xy + 2 = -2y +2
5xy + 2 = -2y +2 <-- the +2's dissapear because they cancel out
5xy = -2y
<span>And there we have it, that long expression has been simplified to something really simple.
</span>
Another example:
3(4(x+3(2 +z)) - 5)= 3y <span><- you can start where ever, I like starting in the middle
</span>3 * (4 * (x + 3*(2 + z)) - 5 ) = 3y <span><- here it is spaced out, we get a much better view
</span><span>3 * (4 * (x + 6 + 3z) - 5 ) = 3y</span>
3 * (4x + 24 + 12z - 5) = 3y <- divide both sides by 3 ..
4x + 24 + 12z - 5 = y <- much better
<span>
</span>Note: Simplify means solving to a degree, but you can't solve it because it has unknowns
Answer:
22
Step-by-step explanation:
Answer:
The standard deviation for the sample mean distribution is 
Step-by-step explanation:
The central limit theorem states that if you have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population then the distribution of the sample means will be approximately normally distributed.
For the random samples we take from the population, we can compute the standard deviation of the sample means:

From the information given
The standard deviation σ = 136 dollars
The sample n = 45
Thus,

The standard deviation for the sample mean distribution is 