Shadows blocking part of the light from the star.
A quick warning though this only works on planets either close to the star or planets that are very large.
Also to ensure that the shadows are planets the shadows have to move or orbit around the star. IE The shadow moves
Answer:
According to Newton's first law of motion, an object maintains its state unless a force acts on it. Therefore, a moving car does not change its direction and keeps its speed unless a force acts on it.
Answer:
25.8 lb/in²
Explanation:
Gay-Lussac's law tells us that given an ideal gas of a certain mass has a constant volume, the pressure exerted on the sides of its container is directly proportional to its absolute temperature.

Answer:
Options A and D are correct
Explanation:
The thermal conductivity of a metal is the property of a metal to allow heat flow through it. conductivity is higher in conductors and low in insulators. Thermal conductivity is high in metals due to the metallic bonds that exist in metals and the presence of free electrons within the metal which allow easy flow of heat from one atom to another.From the problem the rod which contains freer electrons will allow more heat to flow easily hence have a higher thermal conductivity.
Thermal conductivity has the formula below;

- k is thermal conductivity,
- A is cross sectional area
- Q is quantity of heat transferred to material.
- ΔT is temperature change.
From the above equation we can see that thermal conductivity is inversely proportional to A and directly proportional to L. This mean the rod with less area will have a higher thermal conductivity and the rod with a higher length will have higher k. Hence option C i wrong and option D is correct.
For specific heat, its very much different from thermal conductivity. Specific heat is the ability of a material to hold heat while thermal conductivity is the ability of heat to flow through a material.
Answer:
43.16°
Explanation:
λ = Wavelength = 1.4×10⁻¹⁰ m
θ₁ = 20°
n can be any integer
d = distance between the two slits
Since for the first bright fringe, n₁ = 1
n₂ = 2 for second order line
The relation between the distance of the slits and the angle through which it is passed is:
dsinθ=nλ
As d and λ are constant

∴ Angle by which the second order line appear is 43.16°