Answer:
The answer is A ) High pressure
I hope this helps you :)
please let me know if I am wrong
Answer:
1. 18.5m/s
2. 17.5 m
3. 0 at its highest point
4. Direction is downwards
Explanation:
1. This egg is thrown vertically from a height
Yo = 0. This egg then falls to the point y = -30.0 at t = 5seconds
Y-Yo = V0t - 1/2gt²
-30-0 = V0(5)-1/2(9.8)(5²)
-30 = 5v0 - 4.9x25
-30 = 5V0 - 122.5
-30+122.4 = 5v0
V0 = 92.5/5
= 18.5m/s
<em><u>this </u></em><em><u>is </u></em><em><u>the </u></em><em><u>initial</u></em><em><u> </u></em><em><u>speed</u></em><em><u> of</u></em><em><u> the</u></em><em><u> </u></em><em><u>egg</u></em>
2. When the egg is at a maximum height it would have a velocity equal to 0
V² = V0² - 2*g*y
V = 0, V0 = 18.5, g = 9.8
0 = 18.5²-2x9.8*y
342.25-19.6y = 0
342.25 = 19.6y
Divide through by 19.6
Y = 342.25/19.6
Y = 17.5m
<em><u>this value is how high it rises above starting point</u></em>
3.
The magnitude of velocity is = 0 at its highest point
4.
This egg falls under gravity. Therefore the acceleration due to gravity has a constant magnitude and direction. Magnitude = 9.8m/s and it's direction is downwards.
5. Please check attachment for graph
Answer:
Ionization potential of C⁺⁵ is 489.6 eV.
Wavelength of the transition from n=3 to n=2 is 1.83 x 10⁻⁸ m.
Explanation:
The ionization potential of hydrogen like atoms is given by the relation :
.....(1)
Here <em>E</em> is ionization potential, <em>Z</em> is atomic number and <em>n</em> is the principal quantum number which represents the state of the atom.
In this problem, the ionization potential of Carbon atom is to determine.
So, substitute 6 for <em>Z</em> and 1 for <em>n</em> in the equation (1).

<em> E = </em>489.6 eV
The wavelength (λ) of the photon due to the transition of electrons in Hydrogen like atom is given by the relation :
......(2)
R is Rydberg constant, n₁ and n₂ are the transition states of the atom.
Substitute 6 for Z, 2 for n₁, 3 for n₂ and 1.09 x 10⁷ m⁻¹ for R in equation (2).
![\frac{1}{\lambda} =1.09\times10^{7} \times6^{2}[\frac{1}{2 ^{2}}-\frac{1}{3 ^{2} }]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D1.09%5Ctimes10%5E%7B7%7D%20%5Ctimes6%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B2%20%5E%7B2%7D%7D-%5Cfrac%7B1%7D%7B3%20%5E%7B2%7D%20%7D%5D)
= 5.45 x 10⁷
λ = 1.83 x 10⁻⁸ m
This is a derived unit. It's a combination of the units for mass, length, and time.
Answer:
Electric field, E = 300.65 N/C
Explanation:
Given that,
Intensity of a beam of electromagnetic radiation, 
We need to find the maximum value of the electric field. The intensity of electromagnetic wave in terms of electric field is given by :

c is the speed of light


E = 300.65 N/C
So, the maximum value of the electric field is 300.65 N/C. Hence, this is the required solution.