The enthalpy of an intermediate step should be manipulated when used to produce an overall equation by using the Hess's law. You could multiply the enthalpy by -1 if this equation is reversed in theory.
Answer:
4
Explanation:
Carbon configuration- 2,4
Valence electrons means the outershell electrons
That means valence electrons=4
Answer:
v = 534.5mL
m = 597.15g
Density = 9.23g/mL
Density = 9.125g/mL
Explanation:
Density = mass/ volume
For the first question
Density = 1.59g/mL
Mass = 834.01g
Volume = ?
Using the above formula we have 1.59 = 834.01/v
v = 834.01/1.59
v = 534.5mL
For the second question
Density =0.9167g/mL
Volume = 651.41mL
Mass =?
Using the above formula we have
0.9167 =m/651.41
Cross multiply
m = 0.9167 x 651.41
m = 597.15g
For the third question
Mass =803.44g
Volume=87.03mL
Density =?
Density = 803.44/87.03
= 9.23g/mL
For the fourth
Density = 56.85/6.23
= 9.125g/mL
Answer:
0.01144L or 1.144x10^-2L
Explanation:
Data obtained from the question include:
V1 (initial volume) = 20.352 mL
P1 (initial pressure) = 680mmHg
P2 (final pressure) = 1210mmHg
V2 (final volume) =.?
Using the Boyle's law equation P1V1 = P2V2, the volume of the container can be obtained as follow:
P1V1 = P2V2
680 x 20.352 = 1210 x V2
Divide both side by 1210
V2 = (680 x 20.352)/1210
V2 = 11.44mL
Now we need to convert 11.44mL to L in order to obtain the desired result. This is illustrated below:
1000mL = 1 L
11.44mL = 11.44/1000 = 0.01144L
Therefore the volume of the container is 0.01144L or 1.144x10^-2L
Im pretty sure it would be kinetic <span />